排列組合解題技巧_第1頁(yè)
排列組合解題技巧_第2頁(yè)
排列組合解題技巧_第3頁(yè)
排列組合解題技巧_第4頁(yè)
排列組合解題技巧_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

關(guān)于排列組合解題技巧第一頁(yè),共十三頁(yè),2022年,8月28日2023/1/42

1.熟悉解決排列組合問題的基本方法;

2.讓學(xué)生掌握基本的排列組合應(yīng)用題的解題技巧;

3.學(xué)會(huì)應(yīng)用數(shù)學(xué)思想分析解決排列組合問題.第二頁(yè),共十三頁(yè),2022年,8月28日2023/1/43一復(fù)習(xí)引入二新課講授

排列組合問題在實(shí)際應(yīng)用中是非常廣泛的,并且在實(shí)際中的解題方法也是比較復(fù)雜的,下面就通過一些實(shí)例來總結(jié)實(shí)際應(yīng)用中的解題技巧.例題1例題6例題5例題4例題3例題2第三頁(yè),共十三頁(yè),2022年,8月28日2023/1/44從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.2.組合的定義:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.3.排列數(shù)公式:4.組合數(shù)公式:1.排列的定義:排列與組合的區(qū)別與聯(lián)系:與順序有關(guān)的為排列問題,與順序無關(guān)的為組合問題.第四頁(yè),共十三頁(yè),2022年,8月28日2023/1/45例1

學(xué)校組織老師學(xué)生一起看電影,同一排電影票12張。8個(gè)學(xué)生,4個(gè)老師,要求老師在學(xué)生之間,且老師互不相鄰,共有多少種不同的坐法?結(jié)論1

插空法:對(duì)于某兩個(gè)元素或者幾個(gè)元素要求不相鄰的問題,可以用插入法.即先排好沒有限制條件的元素,然后將有限制條件的元素按要求插入排好元素的空檔之中即可.分析

此題涉及到的是不相鄰問題,并且是對(duì)老師有特殊的要求,因此老師是特殊元素,在解決時(shí)就要特殊對(duì)待.所涉及問題是排列問題.解

先排學(xué)生共有種排法,然后把老師插入學(xué)生之間的空檔,共有7個(gè)空檔可插,選其中的4個(gè)空檔,共有種選法.根據(jù)乘法原理,共有的不同坐法為種.第五頁(yè),共十三頁(yè),2022年,8月28日2023/1/46例25個(gè)男生3個(gè)女生排成一排,3個(gè)女生要排在一起,有多少種不同的排法?結(jié)論2

捆綁法:要求某幾個(gè)元素必須排在一起的問題,可以用捆綁法來解決問題.即將需要相鄰的元素合并為一個(gè)元素,再與其它元素一起作排列,同時(shí)要注意合并元素內(nèi)部也可以作排列.分析

此題涉及到的是排隊(duì)問題,對(duì)于女生有特殊的限制,因此,女生是特殊元素,并且要求她們要相鄰,因此可以將她們看成是一個(gè)元素來解決問題.解

因?yàn)榕旁谝黄?所以可以將3個(gè)女生看成是一個(gè)人,與5個(gè)男生作全排列,有種排法,其中女生內(nèi)部也有種排法,根據(jù)乘法原理,共有種不同的排法.第六頁(yè),共十三頁(yè),2022年,8月28日2023/1/47例3

在高二年級(jí)中的8個(gè)班,組織一個(gè)12個(gè)人的年級(jí)學(xué)生分會(huì),每班要求至少1人,名額分配方案有多少種?結(jié)論3

轉(zhuǎn)化法(插拔法):對(duì)于某些較復(fù)雜的、或較抽象的排列組合問題,可以利用轉(zhuǎn)化思想,將其化歸為簡(jiǎn)單的、具體的問題來求解.分析

此題若直接去考慮的話,就會(huì)比較復(fù)雜.但如果我們將其轉(zhuǎn)換為等價(jià)的其他問題,就會(huì)顯得比較清楚,方法簡(jiǎn)單,結(jié)果容易理解.解

此題可以轉(zhuǎn)化為:將12個(gè)相同的白球分成8份,有多少種不同的分法問題,因此須把這12個(gè)白球排成一排,在11個(gè)空檔中放上7個(gè)相同的黑球,每個(gè)空檔最多放一個(gè),即可將白球分成8份,顯然有種不同的放法,所以名額分配方案有種.第七頁(yè),共十三頁(yè),2022年,8月28日2023/1/48例4

袋中有不同的5分硬幣23個(gè),不同的1角硬幣10個(gè),如果從袋中取出2元錢,有多少種取法?結(jié)論4

剩余法:在組合問題中,有多少取法,就有多少種剩法,他們是一一對(duì)應(yīng)的,因此,當(dāng)求取法困難時(shí),可轉(zhuǎn)化為求剩法.分析

此題是一個(gè)組合問題,若是直接考慮取錢的問題的話,情況比較多,也顯得比較凌亂,難以理出頭緒來.但是如果根據(jù)組合數(shù)性質(zhì)考慮剩余問題的話,就會(huì)很容易解決問題.解

把所有的硬幣全部取出來,將得到0.05×23+0.10×10=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3個(gè)5分或1個(gè)5分與1個(gè)1角,所以共有種取法.第八頁(yè),共十三頁(yè),2022年,8月28日2023/1/49例5

期中安排考試科目9門,語(yǔ)文要在數(shù)學(xué)之前考,有多少種不同的安排順序?結(jié)論5

對(duì)等法:在有些題目中,它的限制條件的肯定與否定是對(duì)等的,各占全體的二分之一.在求解中只要求出全體,就可以得到所求.分析

對(duì)于任何一個(gè)排列問題,就其中的兩個(gè)元素來講的話,他們的排列順序只有兩種情況,并且在整個(gè)排列中,他們出現(xiàn)的機(jī)會(huì)是均等的,因此要求其中的某一種情況,能夠得到全體,那么問題就可以解決了.并且也避免了問題的復(fù)雜性.解

不加任何限制條件,整個(gè)排法有種,“語(yǔ)文安排在數(shù)學(xué)之前考”,與“數(shù)學(xué)安排在語(yǔ)文之前考”的排法是相等的,所以語(yǔ)文安排在數(shù)學(xué)之前考的排法共有種.第九頁(yè),共十三頁(yè),2022年,8月28日2023/1/410例6

某班里有43位同學(xué),從中任抽5人,正、副班長(zhǎng)、團(tuán)支部書記至少有一人在內(nèi)的抽法有多少種?結(jié)論6

排除法:有些問題,正面直接考慮比較復(fù)雜,而它的反面往往比較簡(jiǎn)捷,可以先求出它的反面,再?gòu)恼w中排除.分析

此題若是直接去考慮的話,就要將問題分成好幾種情況,這樣解題的話,容易造成各種情況遺漏或者重復(fù)的情況.而如果從此問題相反的方面去考慮的話,不但容易理解,而且在計(jì)算中也是非常的簡(jiǎn)便.這樣就可以簡(jiǎn)化計(jì)算過程.解

43人中任抽5人的方法有種,正副班長(zhǎng),團(tuán)支部書記都不在內(nèi)的抽法有種,所以正副班長(zhǎng),團(tuán)支部書記至少有1人在內(nèi)的抽法有種.第十頁(yè),共十三頁(yè),2022年,8月28日2023/1/411練習(xí):有12個(gè)人,按照下列要求分配,求不同的分法種數(shù).(1)分為兩組,一組7人,一組5人;(2)分為甲、乙兩組,甲組7人,乙組5人;(3)分為甲、乙兩組,一組7人,一組5人;(4)分為甲、乙兩組,每組6人;(5)分為兩組,每組6人;(6)分為三組,一組5人,一組4人,一組3人;(7)分為甲、乙、丙三組,甲組5人,乙組4人,丙組3人;(8)分為甲、乙、丙三組,一組5人,一組4人,一組3人;(9)分為甲、乙、丙三組,每組4人;(10)分為三組,每組4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論