版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PowerMOSFETApplicationNotesTranslatedby何起富PowerMOSFET應用注意事項----摘自FairchildApplicationNote7500Rev.A&ApplicationNote9010Rev.DPowerMOSFETApplicationNote
引言(Introduction)PowerMOSFET(功率型金屬氧化物半導體場效應晶體管)的工作原理,規(guī)格及性能均有異於雙極性的晶體管。事實上,PowerMOSFET在性能上總體來講要優(yōu)於雙極性的晶體管。在很寬的溫度范圍內都能保持穩(wěn)定的增益及響應時間.極快的開關速度;隻需簡單的驅動電路;免除或大大降低了二次擊穿的危險;可以並聯(lián)起來使用;引言(Introduction)
特性總介(GeneralCharacteristics)傳統(tǒng)的n-p-n型bipolartransistor是一種current-driven的元件,它的3個管腳(base,emitter&collector)通過合金金屬線的接觸直接與silicondice相連。特性總介(GeneralChara
特性總介(GeneralCharacteristics)Bipolartransistor被視作是一種少數(shù)載流子的器件,在這種器件裡面,注入的少數(shù)載流子被多數(shù)載流子中和掉。這種中和作用的一個缺陷就是它會限制器件本身的工作速度。而且由於它用電流驅動base-emitter作為input,所以bipolartransistor對於其驅動電路來講會呈現(xiàn)一個較低的阻抗。在絕大多數(shù)的電源電路中,這種低阻抗的的input端需要較為復雜的驅動電路特性總介(GeneralChara
相對而言,PowerMOSFET是一種voltage-driven的器件,它的gate極(如圖Figure1(a)),跟其siliconbody本身由一層薄的的SiO2隔離而保持電氣上的絕緣。作為一種多數(shù)載流子的半導體器件,MOSFET較之於bipolartransistor來講具有快得多的工作速度,因為在工作過程中不存在charge-storage的現(xiàn)象。MOSFET是一種電壓控制型的器件,它有一個具電氣隔離的gate極,採用多數(shù)載流子的方式由source極流到drain極。特性總介(GeneralCharacteristics)相對而言,PowerMOSFET是
當一個正電壓加在一個n型MOSFET的gate極上的時候,會在gate極下面的通道區(qū)域內形成一個電場;那就是說,這種gate極上的electriccharge的作用會導致p區(qū)位於gate極下面的那一部分會轉換成n型區(qū)(如圖figure1(b)所示)MOSFET工作時的關鍵是當電壓加在gate極的時候,在gate極下面的區(qū)域會形成一個inversion的通道特性總介(GeneralCharacteristics)當一個正電壓加在一個n型MOSFET
這種轉換的現(xiàn)象,稱為surface-inversion現(xiàn)象,這樣,電流就可以通過這個n型區(qū)從drain極流到source極。實際上,在這種狀態(tài)下,MOSFET不再是一個n-p-n型的器件。處在drain極和source極的這個區(qū)域可被視為是一個電阻,盡管它不象傳統(tǒng)電阻那樣表現(xiàn)出線性的狀態(tài)。正是由於這種surface-inversion的現(xiàn)象,MOSFET的工作原理才徹底地與bipolartransistor不一樣,bipolartransistor在任何時候都保持其n-p-n的特性。特性總介(GeneralCharacteristics)MOSFET工作時的關鍵是當電壓加在gate極的時候,在gate極下面的區(qū)域會形成一個inversion的通道“電阻”這種轉換的現(xiàn)象,稱為surface-
特性總介(GeneralCharacteristics)MOSFET發(fā)展的前身:JFETNoisolationlayer無絕緣層?…摻雜了幾價原子特性總介(GeneralChara
特性總介(GeneralCharacteristics)JFET耗盡型MOSFET特性總介(GeneralChara
特性總介(GeneralCharacteristics)增強型MOSFET特性總介(GeneralChara
特性總介(GeneralCharacteristics)*如何形成一個通道*電容效應特性總介(GeneralChara
正是由於有這樣一個electrically-isolated的gate極的緣故,MOSFET被稱之為具有高輸入端阻抗,voltage-controlled型的器件;反觀bipolartransistor則是低輸入端阻抗,current-controlled型的器件。作為一個多數(shù)載流子的半導體器件,MOSFET不需經(jīng)過一個charge的階段,所以其開關速度遠快於bipolartransistor.多數(shù)載流子的半導體器件在溫度升高的時候其多數(shù)載流子的速度會趨緩。這種效應,會帶來另外一種稱之為carriermobility的現(xiàn)象(在這裡mobility是用來定義當電場存在的情況下,多數(shù)載流子的平均流動速率),這種現(xiàn)象可以使MOSFET在溫度上升時具有更高的阻抗,可以更好地免除當溫度runaway的時候像bipolar元件一樣遇到的麻煩。特性總介(GeneralCharacteristics)正是由於有這樣一個electrica
在做成MOSFET的制程中會產(chǎn)生一個有用的副產(chǎn)品,這是在source極和drain極內部寄生的一個diode,如圖Figure(c)所示(除bipolardarlingtontransistor之外,一般的bipolartransistor並不具備類似的等效diode),它的這種特性使其在inductive-load開關切換的情況下可以充當一個穩(wěn)壓的二極管。由於MOSFET本身的結構,在器件內部會寄生一個diode,設計者在實現(xiàn)某些電路功能的時候可以充分利用這個diode特性總介(GeneralCharacteristics)有一個寄生的BJT和一個DIODE在做成MOSFET的制程中會產(chǎn)生一個
結構(Structure)以Fairchild的PowerMOSFET為例,是採用垂直式double-diffused制程來做成的,稱為VDMOS或簡稱為DMOS。DMOSMOSFET是由單晶siliconchip組成。這種單晶的siliconchip由許多結構緊湊,六角形的cell組成。Cell數(shù)目的多少主要取決於siliconchip的尺寸大小。例如,一個120-milsqt的chip包含大約5,000個cell;一個240-milsqt的chip擁有超過25,000個cell.結構(Structure)以Fair
採用multiple-cells這樣的結構其中的一個目的是為了減小MOSFET處在通態(tài)時候的的參數(shù)Rds(on),也就是drain極到source極的阻抗。當Rds(on)減小了之後,器件在power-switching的時候可以表現(xiàn)出優(yōu)越的特性,因為當drain-to-source的電流是一個給定值的時候,Rds(on)越小,在drain-to-source的壓降也會越小。結構(Structure)採用multiple-cells這樣
由於drain極到source極之間的通道本質上呈現(xiàn)阻抗性,由於surface-inversion現(xiàn)象的存在,對總的阻抗來講,每一個cell都會平均分布到一個阻抗值,假設為Rn.每一個單獨的cell其阻值已經(jīng)相當?shù)停珵榱藴p小Rds(on),非常有必要用大量的cell以並聯(lián)的方式來組成一個chip.總之,chip上並聯(lián)的cell越多,其Rds(on)的值就會越低。Rds(on)=Rn/N,其中N是cell的數(shù)量。結構(Structure)由於drain極到source極之間
實際上,Rds(on)由3個不同的阻值所組成。Figure2表示的是單個cell的3種阻抗成份的曲線圖以及它們對總的一個Rds(on)值的影響。曲線中任何一點Rds(on)的值都由那一點3個不同的阻抗相加而成:
結構(Structure)Rds(on)=Rbulk+Rchan+Rext.其中Rchan表示的是gate極下面通道的阻值;Rext包含了基層,焊接點,引線以及package所產(chǎn)生的阻值;而Rbulk表示的是n區(qū)裡面兩層之間的狹窄處所產(chǎn)生的電阻,如圖Figure1(a)所示,再加上狹窄處區(qū)域下面的電流通道的阻值以及貫穿整個器件本體到基層區(qū)域的阻值實際上,Rds(on)由3個不同的阻
注意Figure2中Rchan及Rext的部分完全跟電壓沒有關系,而Rbulk跟加的電壓有很大的關系。需同時注意到的是電壓在150V以下的時候,Rds(on)主要由Rchan和Rext決定;當大於150V時,Rds(on)很明顯地可以看到主要由Rbulk決定。Table1給出的是在相應給定電壓的情況下,3種阻值組成Rds(on)時各自所佔的比重。結構(Structure)注意Figure2中Rchan及Re
可以從先前的討論中得到適用於任何DMOS器件,半導體物理學原理固有的兩個推論:首先,MOSFET的breakdown-voltage提升的同時,Rds(on)會隨之而顯著增加;再者,如果需要MOSFET去承受更高的breakdown電壓,就無可避免地難以去降低Rds(on).結構(Structure)MOSFET的缺點:當breakdown電壓over200V時,較之於同等voltage¤trating的BJT器件,MOSFET具有較高的conductionloss.可以從先前的討論中得到適用於任何DM
耐高壓的器件其Rbulk較大是因為drain極區(qū)需要這種厚厚的但輕摻雜的eip層以避免在器件中產(chǎn)生高電場(避免過早breakdown).當epi層做得更厚,以更小的阻抗來承受高電壓得時候,bulk這種阻抗成份會顯著地增加(如圖2),並且開始支配channel及external這兩種阻抗成份。因此,Rds(on)會隨著breakdown電壓得增加而增加,如果需要MOSFET去承受更高的breakdown電壓,就無可避免地難以去降低Rds(on)結構(Structure)耐高壓的器件其Rbulk較大是因為d
也有一個辦法可以去改善這個問題。Rds(on)針對的是給定cell及chip尺寸所具有的值。採用大一些的chip會得到較低的Rds(on),因為大一些的chip含有較多的cell(如圖Figure3),隨著縱坐標的變換可以得到每一個阻抗的構成部分。結構(Structure)Rds(on)1Rds(on)2也有一個辦法可以去改善這個問題。Rd
採用大一點的chip所帶來的一個後果就是會導致成本的增加,因為chipsize是一個主要的成本因素。而且因為chip的面積是隨著耐電壓的增加而呈指數(shù)遞增的,並不是線性的,因此這種額外的成本將會是成本的重要部分。舉個例子來說,為了得到一個當breakdown電壓是原先值的兩倍時的Rds(on),新的chip的面積將會4~5倍於原先的面積,盡管成本沒有呈線性增加,但也已經(jīng)是遠遠高於原先的成本。結構(Structure)UCOSTChipsizeChipsize採用大一點的chip所帶來的一個後果
溫度效應(Effectsoftemperature)對於bipolartransistor來講,高工作溫度常常是導致不良的因素。高溫主要是由於hot-spotting的效應所產(chǎn)生的,因為bipolar器件中的電流會趨向集中於emitter周圍。如不加抑制的話,這種hot-spotting效應將會成為導致過快溫升的機理所在。溫度效應(Effectsofte
MOSFET並沒有這種缺點,因為它的電流是採多數(shù)載流子的方式。多數(shù)載流子的流動性(mobility)(在這裡,再一次強調,mobility是用來定義當電場存在的情況下,多數(shù)載流子的平均流動速率)跟silicon內部溫度有關:溫度升高流速將趨緩。溫度效應(Effectsoftemperature)TmobilityTRds(on)MOSFET並沒有這種缺點,因為它的
這種呈反比的關系顯示當chip變熱的時候載流子的速率將會變慢。事實上,siliconpath的阻值將會上升,這樣可以避免電流過分集中趨向於hotspots.其實,如MOSFET內部趨向形成hotspot時,其本身的阻值就會升高以阻止其形成hotspot並分散其電流,電流將會重新選擇流向,達到芯片局部溫度下降的目的。溫度效應(Effectsoftemperature)正面橫截方向看hotspots側面橫截方向看hotspot,溫度升高時,由於其阻值上升,電流被分散這種呈反比的關系顯示當chip變熱的
由於本身silicon結構的特點,MOSFET的阻值跟溫度的關系呈正向溫度系數(shù)變化,如圖figure4所示:MOSFET的阻抗值具有正向溫度系數(shù)的特點,這樣可以極大地避免溫度升高時,出現(xiàn)過高而難以遏制的現(xiàn)象。溫度效應(Effectsoftemperature)由於本身silicon結構的特點,M
在阻值上呈現(xiàn)正溫度系數(shù)意味著MOSFET相對溫度變化時所表現(xiàn)出來的更加穩(wěn)定的特性是其本身所固有的一種特點,這樣,MOSFET就可以在溫升過快時提供自我保護以及避免二次擊穿。這種特性的另外一個好處是MOSFET可以採取並聯(lián)的方式來進行工作,不用擔心其中的一個器件會吃掉另外一個器件的電流。如果器件開始發(fā)熱,它的阻值就會升高,電流會被拉下來以達到給芯片降溫的目的。溫度效應(Effectsoftemperature)在阻值上呈現(xiàn)正溫度系數(shù)意味著MOS
柵極參數(shù)GateParameters為了使n型的MOSFETdrain-to-source有電流流過,在gate-to-source必須施加一個正向電壓。由於剛才在前面所提到的,gate極與器件的本體在電氣上是隔離的,理論上沒有電流可以從激勵源流進gate極。I?Howyoucan?柵極參數(shù)GateParameter
事實上,會有一個小電流(幾十個nanoamperes)從gate-to-source流過,很多技術手冊把它定義成漏電流,Igss.由於gate極的電流非常之小,MOSFET的輸入阻抗顯得尤其高(兆歐級);而且,事實上gate-to-source所表現(xiàn)出來的capacitive(容抗性)遠甚於resistive(阻抗性)。(因為gate極本身是絕緣的,gate-to-source形成一個電容)柵極參數(shù)GateParametersUgsIgs100nA…原來如此事實上,會有一個小電流(幾十個nan
圖Figure5解釋的是MOSFET最基本的一種輸入電路。其中所畫出來的零件是等效模式,並不是實際的零件電阻R和電容C.電容Ciss在MOSFET的技術手冊裡是器件內部gate-to-source和gate-to-drain極間電容的組合;電阻R表示的是gate極所顯示出來的阻抗.MOSFET輸入端等效電阻和等效電容會影響到器件本身的最高工作頻率。MOSFET的開關速度主要決定於其輸入阻抗特性和輸入電容特性柵極參數(shù)GateParameters圖Figure5解釋的是MOSFET
工作頻率(OperatingFrequency)大部分的DMOS制程通常採用polysilicon(多晶硅)gate的結構,而不是metal-gate的形式.如果gate結構的阻抗(如圖Figure5中的R)很高,DMOS器件的開關時間也會增加,這樣就會降低它的最高工作頻率。相對metal-gate的結構來講,polysilicongate具有較高的阻抗。由此可以很好地解釋為什麼metal-gate結構的MOSFET常用於高頻場合(>20Mhz),而polysilicon結構的MOSFET多用於高功率但頻率較低的場合。MOSFET的開關速度主要決定於其輸入阻抗特性和輸入電容特性工作頻率(OperatingFre
由於MOSFET的響應頻率受制於gate端的有效R和C的值,所以可以從一些技術手冊中的參數(shù)大概估算出MOSFET的最高工作頻率。阻抗部分主要取決於polysilicon-gateoverlay結構中薄層的電阻值,該值大約是20歐姆。鑒於在技術手冊裡一般不會給出總的R的值,Ciss一般會給出:以最大值的方式表示,同時會以圖示的方式來反映出其與drian-to-source電壓的關系。工作頻率(OperatingFrequency)由於MOSFET的響應頻率受制於ga
Ciss的值跟chipsize有關;chip越大,Ciss值越大。由於MOSFET的輸入端的RC組合勢必會在drivingcircuit的作用下有一個charge和discharge的問題,而且由於容量的支配,較之於較小的chip,較大的chip開關速度較慢,因此,較大chip的MOSFET適合用在低頻的應用電路裡面??偠灾?,絕大部分的的MOSFET最高使用頻率在1Mhz到10Mhz之間。工作頻率(OperatingFrequency)Ciss的值跟chipsize有關
輸出特性(OutputCharacteristics)MOSFET最常用的graphicaldata可能是輸出特性曲線或者是drain-to-source電流(Ids)與drain-to-source電壓(Vds)的關系曲線圖。典型的曲線圖如圖Figure6所示,給出的是在不同Vgs的情況下,Id隨著Vds變化的一個關系曲線圖。MOSFET需要一個高輸入電壓(至少10V)以使它們可以以fullrated的Id狀態(tài)來工作。輸出特性(OutputCharac
曲線圖可以分為兩個部分:一個是線性區(qū),Vds較小,Id隨著Vds的增加而線性增加;另外一個是飽和區(qū),Vds增加的時候,Id基本上沒有什麼變化(器件相當於一個恆流源)。電流變化的線性部分和飽和部分交匯的區(qū)域稱之為(pinch-offregion)輸出特性(OutputCharacteristics)曲線圖可以分為兩個部分:一個是線性區(qū)
驅動要求(DriveRequirements)當我們考慮需要一個多大的Vgs才能使一個MOSFET工作的時候,注意到在圖Figure6裡面,MOSFET在Vgs達到一個特定值(稱之為導通電壓)之前,MOSFET是不會導通的(沒有電流流過)。換句話說,開啟電壓一定要達到一定的值以後,我們才能期望得到想要的Id電流。對許多的MOSFET來講,其開啟電壓一般為2V。在選擇一個MOSFET或設計MOSFET的驅動電路的時候,這是一個重要的考慮因素:gate極驅動電路必須提供一個至少等同開啟電壓大小的電壓,不過我們建議,這個電壓應該比開啟電壓大一些。驅動要求(DriveRequire
如圖Figure6所示,MOSFET必須要有一個一定大小的電壓才能去驅動它,比如是10V,才能確保它以最大的飽和電流的狀態(tài)來工作。但是有些IC電路,如TTL型的IC電路,在沒有加external的pull-up電阻時,沒有辦法提供所需大小的電壓。即使把電壓pull-up到了5V,TTL驅動電路仍無法完全使MOSFET工作在飽和狀態(tài)。因此,TTL驅動電路最適合用在當開關的電流(Id)遠小於ratedcurrent的場合。驅動要求(DriveRequirements)如圖Figure6所示,MOSFET
CMOSIC的驅動電路可以提供10V的激勵電壓,這些器件有能力驅使MOSFET工作在FullSaturation的狀態(tài)。換而言之,,CMOS無法做到像TTL驅動電路一樣的開關速度。最好的做法是,不管是採用TTL還是CMOSIC,當我們在IC的output和gate極的input之間嵌入特殊的bufferingchip去滿足MOSFET的gate極的需求時,兩種方式都可以實現(xiàn)驅動的目的。驅動要求(DriveRequirements)CMOSIC的驅動電路可以提供10
半導體的基本原理按導電性能的不同,物質可分為導體,絕緣體和半導體。目前用來制造電子器件的材料主要是單晶半導體硅(Si)和鍺(Ge).硅和鍺都是四價元素,其原子圖如下所示:純凈的半導體稱為本征半導體,會形成如下的空間點陣半導體的基本原理按導電性能的不同,物
半導體的基本原理在受熱或有外加電場的情況下,共價鍵中的價電子有可能掙脫共價鍵的束縛而形成自由電子,帶“-”電,其原來的位置形成一個帶“+”電的空穴。
相鄰共價鍵內的電子在正電荷的吸引下會填補附近的空穴,從而把空穴移動到別處去。依此類推,空穴便可在整個晶體內移動。當有電場作用時,價電子定向地填補空位,使空位做相反方向的的移動,這與帶正電荷的粒子做定向運動的效果完全相同。在這裡,帶負電荷的自由電子和帶正電荷的空穴都稱為載流子。半導體的基本原理在受熱或有外加電場的
半導體的基本原理N型半導體P型半導體純凈半導體由於其內部的載流子濃度有限,導電能力較差;經(jīng)過摻雜之後,加大了載流子濃度,導電能力大大提升磷,砷,銻等多數(shù)載流子硼,鋁,銦等半導體的基本原理N型半導體P型半導體
半導體的基本原理-如何形成PN結N型半導體P型半導體有濃度差,相互進行擴散雜質原子多一個價電子而成為負離子雜質原子失去一個價電子而成為正離子半導體的基本原理-如何形成PN結N型
N型半導體P型半導體半導體的基本原理-如何形成PN結擴散後形成內建電場稱為耗盡層,對載流子的擴散有阻礙作用,又稱為阻擋區(qū)或勢壘區(qū)?…N型半導體P型半導體半導體的基本原理
半導體的基本原理PN結正向偏置多數(shù)載流子被強行推入耗盡區(qū),中和其中的正負離子耗盡區(qū)變窄並最終消失,利於多數(shù)載流子擴散,導電能力大大增強.半導體的基本原理PN結正向偏置多數(shù)載
半導體的基本原理PN結反向偏置多數(shù)載流子被強行拉離耗盡區(qū),使更多的正負離子裸出來耗盡區(qū)變寬,更不利於多數(shù)載流子擴散,導電能力大大削弱.…原來如此,怪不得二極體有這樣得特性半導體的基本原理PN結反向偏置多數(shù)載
半導體的基本原理PN結得伏安特性半導體的基本原理PN結得伏安特性
半導體的基本原理重摻雜重摻雜的好處在哪裡呢?半導體的基本原理重摻雜重摻雜的好處在
半導體的基本原理在重摻雜的PN結中,耗盡區(qū)很窄,所以不大的反向電壓就能使耗盡區(qū)內形成很強的電場。當反向電壓大到一定值時,強電場足以使耗盡區(qū)內的中性原子的價電子直接拉出共價鍵,產(chǎn)生大量的電子、空穴對,使反向電流急劇增大。這種擊穿成為齊納擊穿或場致?lián)舸?。隻要控制擊穿電流,擊穿是可以恢復而不會毀壞PN結。輕摻雜重摻雜半導體的基本原理在重摻雜的PN結中,
半導體的基本原理在輕摻雜得PN結中,外加反向電壓時,耗盡區(qū)較寬,少子漂移通過耗盡區(qū)時被加速,動能增大。當反向電壓大到一定值時,在耗盡區(qū)內,被加速而獲得高能得少子,在與中性原子得價電子相碰撞時,會把價電子撞出共價鍵,產(chǎn)生電子、空穴對。新產(chǎn)生得電子、空穴被強電場加速後,又會撞出新的電子、空穴對。這種連鎖反應使耗盡區(qū)內的載流子數(shù)目劇增,從而引起反向電流急劇增大。其現(xiàn)象類似於雪崩,所以成為雪崩擊穿。輕摻雜重摻雜半導體的基本原理在輕摻雜得PN結中,
半導體的基本原理-晶體管的一般工作模式1)發(fā)射極正偏,集電極反偏;2)發(fā)射區(qū)向基區(qū)注入電子,基區(qū)的空穴也向發(fā)射區(qū)注入,但發(fā)射區(qū)相對基區(qū)為重摻雜,注入的空穴濃度遠小於電子濃度;3)電子在基區(qū)中邊擴散邊復合;4)擴散到集電結的電子被集電區(qū)收集。
所以在晶體管中,薄的基區(qū)將發(fā)射結和集電結緊密地聯(lián)系在一起,它能把e結的正向電流,幾乎全部地傳輸?shù)椒聪蚱玫模憬Y回路中去。這是晶體管實現(xiàn)放大功能的關鍵所在。半導體的基本原理-晶體管的一般工作模
BJT的共射極應用半導體的基本原理PN結得伏安特性共射輸出特性曲線BJT的共射極應用半導體的基本原理P
半導體的基本原理PN結得伏安特性BJT的最高耐電壓及二次擊穿所謂二次擊穿是指器件發(fā)生一次擊穿後,集電極電流繼續(xù)增加,在某電壓,電流點產(chǎn)生向低阻抗區(qū)高速移動的的負阻現(xiàn)象一旦發(fā)生二次擊穿,輕者使BJT耐壓降低,特性變差,重者使集電結和發(fā)射結熔通,使BJT受到永久性毀壞。半導體的基本原理PN結得伏安特性BJ
半導體的基本原理PN結得伏安特性半導體的基本原理PN結得伏安特性THANKYOUTheend!THANKYOUTheend!PowerMOSFETApplicationNotesTranslatedby何起富PowerMOSFET應用注意事項----摘自FairchildApplicationNote7500Rev.A&ApplicationNote9010Rev.DPowerMOSFETApplicationNote
引言(Introduction)PowerMOSFET(功率型金屬氧化物半導體場效應晶體管)的工作原理,規(guī)格及性能均有異於雙極性的晶體管。事實上,PowerMOSFET在性能上總體來講要優(yōu)於雙極性的晶體管。在很寬的溫度范圍內都能保持穩(wěn)定的增益及響應時間.極快的開關速度;隻需簡單的驅動電路;免除或大大降低了二次擊穿的危險;可以並聯(lián)起來使用;引言(Introduction)
特性總介(GeneralCharacteristics)傳統(tǒng)的n-p-n型bipolartransistor是一種current-driven的元件,它的3個管腳(base,emitter&collector)通過合金金屬線的接觸直接與silicondice相連。特性總介(GeneralChara
特性總介(GeneralCharacteristics)Bipolartransistor被視作是一種少數(shù)載流子的器件,在這種器件裡面,注入的少數(shù)載流子被多數(shù)載流子中和掉。這種中和作用的一個缺陷就是它會限制器件本身的工作速度。而且由於它用電流驅動base-emitter作為input,所以bipolartransistor對於其驅動電路來講會呈現(xiàn)一個較低的阻抗。在絕大多數(shù)的電源電路中,這種低阻抗的的input端需要較為復雜的驅動電路特性總介(GeneralChara
相對而言,PowerMOSFET是一種voltage-driven的器件,它的gate極(如圖Figure1(a)),跟其siliconbody本身由一層薄的的SiO2隔離而保持電氣上的絕緣。作為一種多數(shù)載流子的半導體器件,MOSFET較之於bipolartransistor來講具有快得多的工作速度,因為在工作過程中不存在charge-storage的現(xiàn)象。MOSFET是一種電壓控制型的器件,它有一個具電氣隔離的gate極,採用多數(shù)載流子的方式由source極流到drain極。特性總介(GeneralCharacteristics)相對而言,PowerMOSFET是
當一個正電壓加在一個n型MOSFET的gate極上的時候,會在gate極下面的通道區(qū)域內形成一個電場;那就是說,這種gate極上的electriccharge的作用會導致p區(qū)位於gate極下面的那一部分會轉換成n型區(qū)(如圖figure1(b)所示)MOSFET工作時的關鍵是當電壓加在gate極的時候,在gate極下面的區(qū)域會形成一個inversion的通道特性總介(GeneralCharacteristics)當一個正電壓加在一個n型MOSFET
這種轉換的現(xiàn)象,稱為surface-inversion現(xiàn)象,這樣,電流就可以通過這個n型區(qū)從drain極流到source極。實際上,在這種狀態(tài)下,MOSFET不再是一個n-p-n型的器件。處在drain極和source極的這個區(qū)域可被視為是一個電阻,盡管它不象傳統(tǒng)電阻那樣表現(xiàn)出線性的狀態(tài)。正是由於這種surface-inversion的現(xiàn)象,MOSFET的工作原理才徹底地與bipolartransistor不一樣,bipolartransistor在任何時候都保持其n-p-n的特性。特性總介(GeneralCharacteristics)MOSFET工作時的關鍵是當電壓加在gate極的時候,在gate極下面的區(qū)域會形成一個inversion的通道“電阻”這種轉換的現(xiàn)象,稱為surface-
特性總介(GeneralCharacteristics)MOSFET發(fā)展的前身:JFETNoisolationlayer無絕緣層?…摻雜了幾價原子特性總介(GeneralChara
特性總介(GeneralCharacteristics)JFET耗盡型MOSFET特性總介(GeneralChara
特性總介(GeneralCharacteristics)增強型MOSFET特性總介(GeneralChara
特性總介(GeneralCharacteristics)*如何形成一個通道*電容效應特性總介(GeneralChara
正是由於有這樣一個electrically-isolated的gate極的緣故,MOSFET被稱之為具有高輸入端阻抗,voltage-controlled型的器件;反觀bipolartransistor則是低輸入端阻抗,current-controlled型的器件。作為一個多數(shù)載流子的半導體器件,MOSFET不需經(jīng)過一個charge的階段,所以其開關速度遠快於bipolartransistor.多數(shù)載流子的半導體器件在溫度升高的時候其多數(shù)載流子的速度會趨緩。這種效應,會帶來另外一種稱之為carriermobility的現(xiàn)象(在這裡mobility是用來定義當電場存在的情況下,多數(shù)載流子的平均流動速率),這種現(xiàn)象可以使MOSFET在溫度上升時具有更高的阻抗,可以更好地免除當溫度runaway的時候像bipolar元件一樣遇到的麻煩。特性總介(GeneralCharacteristics)正是由於有這樣一個electrica
在做成MOSFET的制程中會產(chǎn)生一個有用的副產(chǎn)品,這是在source極和drain極內部寄生的一個diode,如圖Figure(c)所示(除bipolardarlingtontransistor之外,一般的bipolartransistor並不具備類似的等效diode),它的這種特性使其在inductive-load開關切換的情況下可以充當一個穩(wěn)壓的二極管。由於MOSFET本身的結構,在器件內部會寄生一個diode,設計者在實現(xiàn)某些電路功能的時候可以充分利用這個diode特性總介(GeneralCharacteristics)有一個寄生的BJT和一個DIODE在做成MOSFET的制程中會產(chǎn)生一個
結構(Structure)以Fairchild的PowerMOSFET為例,是採用垂直式double-diffused制程來做成的,稱為VDMOS或簡稱為DMOS。DMOSMOSFET是由單晶siliconchip組成。這種單晶的siliconchip由許多結構緊湊,六角形的cell組成。Cell數(shù)目的多少主要取決於siliconchip的尺寸大小。例如,一個120-milsqt的chip包含大約5,000個cell;一個240-milsqt的chip擁有超過25,000個cell.結構(Structure)以Fair
採用multiple-cells這樣的結構其中的一個目的是為了減小MOSFET處在通態(tài)時候的的參數(shù)Rds(on),也就是drain極到source極的阻抗。當Rds(on)減小了之後,器件在power-switching的時候可以表現(xiàn)出優(yōu)越的特性,因為當drain-to-source的電流是一個給定值的時候,Rds(on)越小,在drain-to-source的壓降也會越小。結構(Structure)採用multiple-cells這樣
由於drain極到source極之間的通道本質上呈現(xiàn)阻抗性,由於surface-inversion現(xiàn)象的存在,對總的阻抗來講,每一個cell都會平均分布到一個阻抗值,假設為Rn.每一個單獨的cell其阻值已經(jīng)相當?shù)?,但為了減小Rds(on),非常有必要用大量的cell以並聯(lián)的方式來組成一個chip.總之,chip上並聯(lián)的cell越多,其Rds(on)的值就會越低。Rds(on)=Rn/N,其中N是cell的數(shù)量。結構(Structure)由於drain極到source極之間
實際上,Rds(on)由3個不同的阻值所組成。Figure2表示的是單個cell的3種阻抗成份的曲線圖以及它們對總的一個Rds(on)值的影響。曲線中任何一點Rds(on)的值都由那一點3個不同的阻抗相加而成:
結構(Structure)Rds(on)=Rbulk+Rchan+Rext.其中Rchan表示的是gate極下面通道的阻值;Rext包含了基層,焊接點,引線以及package所產(chǎn)生的阻值;而Rbulk表示的是n區(qū)裡面兩層之間的狹窄處所產(chǎn)生的電阻,如圖Figure1(a)所示,再加上狹窄處區(qū)域下面的電流通道的阻值以及貫穿整個器件本體到基層區(qū)域的阻值實際上,Rds(on)由3個不同的阻
注意Figure2中Rchan及Rext的部分完全跟電壓沒有關系,而Rbulk跟加的電壓有很大的關系。需同時注意到的是電壓在150V以下的時候,Rds(on)主要由Rchan和Rext決定;當大於150V時,Rds(on)很明顯地可以看到主要由Rbulk決定。Table1給出的是在相應給定電壓的情況下,3種阻值組成Rds(on)時各自所佔的比重。結構(Structure)注意Figure2中Rchan及Re
可以從先前的討論中得到適用於任何DMOS器件,半導體物理學原理固有的兩個推論:首先,MOSFET的breakdown-voltage提升的同時,Rds(on)會隨之而顯著增加;再者,如果需要MOSFET去承受更高的breakdown電壓,就無可避免地難以去降低Rds(on).結構(Structure)MOSFET的缺點:當breakdown電壓over200V時,較之於同等voltage¤trating的BJT器件,MOSFET具有較高的conductionloss.可以從先前的討論中得到適用於任何DM
耐高壓的器件其Rbulk較大是因為drain極區(qū)需要這種厚厚的但輕摻雜的eip層以避免在器件中產(chǎn)生高電場(避免過早breakdown).當epi層做得更厚,以更小的阻抗來承受高電壓得時候,bulk這種阻抗成份會顯著地增加(如圖2),並且開始支配channel及external這兩種阻抗成份。因此,Rds(on)會隨著breakdown電壓得增加而增加,如果需要MOSFET去承受更高的breakdown電壓,就無可避免地難以去降低Rds(on)結構(Structure)耐高壓的器件其Rbulk較大是因為d
也有一個辦法可以去改善這個問題。Rds(on)針對的是給定cell及chip尺寸所具有的值。採用大一些的chip會得到較低的Rds(on),因為大一些的chip含有較多的cell(如圖Figure3),隨著縱坐標的變換可以得到每一個阻抗的構成部分。結構(Structure)Rds(on)1Rds(on)2也有一個辦法可以去改善這個問題。Rd
採用大一點的chip所帶來的一個後果就是會導致成本的增加,因為chipsize是一個主要的成本因素。而且因為chip的面積是隨著耐電壓的增加而呈指數(shù)遞增的,並不是線性的,因此這種額外的成本將會是成本的重要部分。舉個例子來說,為了得到一個當breakdown電壓是原先值的兩倍時的Rds(on),新的chip的面積將會4~5倍於原先的面積,盡管成本沒有呈線性增加,但也已經(jīng)是遠遠高於原先的成本。結構(Structure)UCOSTChipsizeChipsize採用大一點的chip所帶來的一個後果
溫度效應(Effectsoftemperature)對於bipolartransistor來講,高工作溫度常常是導致不良的因素。高溫主要是由於hot-spotting的效應所產(chǎn)生的,因為bipolar器件中的電流會趨向集中於emitter周圍。如不加抑制的話,這種hot-spotting效應將會成為導致過快溫升的機理所在。溫度效應(Effectsofte
MOSFET並沒有這種缺點,因為它的電流是採多數(shù)載流子的方式。多數(shù)載流子的流動性(mobility)(在這裡,再一次強調,mobility是用來定義當電場存在的情況下,多數(shù)載流子的平均流動速率)跟silicon內部溫度有關:溫度升高流速將趨緩。溫度效應(Effectsoftemperature)TmobilityTRds(on)MOSFET並沒有這種缺點,因為它的
這種呈反比的關系顯示當chip變熱的時候載流子的速率將會變慢。事實上,siliconpath的阻值將會上升,這樣可以避免電流過分集中趨向於hotspots.其實,如MOSFET內部趨向形成hotspot時,其本身的阻值就會升高以阻止其形成hotspot並分散其電流,電流將會重新選擇流向,達到芯片局部溫度下降的目的。溫度效應(Effectsoftemperature)正面橫截方向看hotspots側面橫截方向看hotspot,溫度升高時,由於其阻值上升,電流被分散這種呈反比的關系顯示當chip變熱的
由於本身silicon結構的特點,MOSFET的阻值跟溫度的關系呈正向溫度系數(shù)變化,如圖figure4所示:MOSFET的阻抗值具有正向溫度系數(shù)的特點,這樣可以極大地避免溫度升高時,出現(xiàn)過高而難以遏制的現(xiàn)象。溫度效應(Effectsoftemperature)由於本身silicon結構的特點,M
在阻值上呈現(xiàn)正溫度系數(shù)意味著MOSFET相對溫度變化時所表現(xiàn)出來的更加穩(wěn)定的特性是其本身所固有的一種特點,這樣,MOSFET就可以在溫升過快時提供自我保護以及避免二次擊穿。這種特性的另外一個好處是MOSFET可以採取並聯(lián)的方式來進行工作,不用擔心其中的一個器件會吃掉另外一個器件的電流。如果器件開始發(fā)熱,它的阻值就會升高,電流會被拉下來以達到給芯片降溫的目的。溫度效應(Effectsoftemperature)在阻值上呈現(xiàn)正溫度系數(shù)意味著MOS
柵極參數(shù)GateParameters為了使n型的MOSFETdrain-to-source有電流流過,在gate-to-source必須施加一個正向電壓。由於剛才在前面所提到的,gate極與器件的本體在電氣上是隔離的,理論上沒有電流可以從激勵源流進gate極。I?Howyoucan?柵極參數(shù)GateParameter
事實上,會有一個小電流(幾十個nanoamperes)從gate-to-source流過,很多技術手冊把它定義成漏電流,Igss.由於gate極的電流非常之小,MOSFET的輸入阻抗顯得尤其高(兆歐級);而且,事實上gate-to-source所表現(xiàn)出來的capacitive(容抗性)遠甚於resistive(阻抗性)。(因為gate極本身是絕緣的,gate-to-source形成一個電容)柵極參數(shù)GateParametersUgsIgs100nA…原來如此事實上,會有一個小電流(幾十個nan
圖Figure5解釋的是MOSFET最基本的一種輸入電路。其中所畫出來的零件是等效模式,並不是實際的零件電阻R和電容C.電容Ciss在MOSFET的技術手冊裡是器件內部gate-to-source和gate-to-drain極間電容的組合;電阻R表示的是gate極所顯示出來的阻抗.MOSFET輸入端等效電阻和等效電容會影響到器件本身的最高工作頻率。MOSFET的開關速度主要決定於其輸入阻抗特性和輸入電容特性柵極參數(shù)GateParameters圖Figure5解釋的是MOSFET
工作頻率(OperatingFrequency)大部分的DMOS制程通常採用polysilicon(多晶硅)gate的結構,而不是metal-gate的形式.如果gate結構的阻抗(如圖Figure5中的R)很高,DMOS器件的開關時間也會增加,這樣就會降低它的最高工作頻率。相對metal-gate的結構來講,polysilicongate具有較高的阻抗。由此可以很好地解釋為什麼metal-gate結構的MOSFET常用於高頻場合(>20Mhz),而polysilicon結構的MOSFET多用於高功率但頻率較低的場合。MOSFET的開關速度主要決定於其輸入阻抗特性和輸入電容特性工作頻率(OperatingFre
由於MOSFET的響應頻率受制於gate端的有效R和C的值,所以可以從一些技術手冊中的參數(shù)大概估算出MOSFET的最高工作頻率。阻抗部分主要取決於polysilicon-gateoverlay結構中薄層的電阻值,該值大約是20歐姆。鑒於在技術手冊裡一般不會給出總的R的值,Ciss一般會給出:以最大值的方式表示,同時會以圖示的方式來反映出其與drian-to-source電壓的關系。工作頻率(OperatingFrequency)由於MOSFET的響應頻率受制於ga
Ciss的值跟chipsize有關;chip越大,Ciss值越大。由於MOSFET的輸入端的RC組合勢必會在drivingcircuit的作用下有一個charge和discharge的問題,而且由於容量的支配,較之於較小的chip,較大的chip開關速度較慢,因此,較大chip的MOSFET適合用在低頻的應用電路裡面??偠灾?,絕大部分的的MOSFET最高使用頻率在1Mhz到10Mhz之間。工作頻率(OperatingFrequency)Ciss的值跟chipsize有關
輸出特性(OutputCharacteristics)MOSFET最常用的graphicaldata可能是輸出特性曲線或者是drain-to-source電流(Ids)與drain-to-source電壓(Vds)的關系曲線圖。典型的曲線圖如圖Figure6所示,給出的是在不同Vgs的情況下,Id隨著Vds變化的一個關系曲線圖。MOSFET需要一個高輸入電壓(至少10V)以使它們可以以fullrated的Id狀態(tài)來工作。輸出特性(OutputCharac
曲線圖可以分為兩個部分:一個是線性區(qū),Vds較小,Id隨著Vds的增加而線性增加;另外一個是飽和區(qū),Vds增加的時候,Id基本上沒有什麼變化(器件相當於一個恆流源)。電流變化的線性部分和飽和部分交匯的區(qū)域稱之為(pinch-offregion)輸出特性(OutputCharacteristics)曲線圖可以分為兩個部分:一個是線性區(qū)
驅動要求(DriveRequirements)當我們考慮需要一個多大的Vgs才能使一個MOSFET工作的時候,注意到在圖Figure6裡面,MOSFET在Vgs達到一個特定值(稱之為導通電壓)之前,MOSFET是不會導通的(沒有電流流過)。換句話說,開啟電壓一定要達到一定的值以後,我們才能期望得到想要的Id電流。對許多的MOSFET來講,其開啟電壓一般為2V。在選擇一個MOSFET或設計MOSFET的驅動電路的時候,這是一個重要的考慮因素:gate極驅動電路必須提供一個至少等同開啟電壓大小的電壓,不過我們建議,這個電壓應該比開啟電壓大一些。驅動要求(DriveRequire
如圖Figure6所示,MOSFET必須要有一個一定大小的電壓才能去驅動它,比如是10V,才能確保它以最大的飽和電流的狀態(tài)來工作。但是有些IC電路,如TTL型的IC電路,在沒有加external的pull-up電阻時,沒有辦法提供所需大小的電壓。即使把電壓pull-up到了5V,TTL驅動電路仍無法完全使MOSFET工作在飽和狀態(tài)。因此,TTL驅動電路最適合用在當開關的電流(Id)遠小於ratedcurrent的場合。驅動要求(DriveRequirements)如圖Figure6所示,MOSFET
CMOSIC的驅動電路可以提供10V的激勵電壓,這些器件有能力驅使MOSFET工作在FullSaturation的狀態(tài)。換而言之,,CMOS無法做到像TTL驅動電路一樣的開關速度。最好的做法是,不管是採用TTL還是CMOSIC,當我們在IC的output和gate極的input之間嵌入
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝載機用車合同(2篇)
- 第24課《愚公移山》八年級語文上冊精講同步課堂(統(tǒng)編版)
- 2024年吉林省長春市中考地理真題卷及答案解析
- 16.1《赤壁賦》-高一語文上學期同步備課拓展(統(tǒng)編版必修上冊)
- 說課稿課件政治
- 西京學院《現(xiàn)代教育技術》2023-2024學年第一學期期末試卷
- 西京學院《企業(yè)級框架基礎》2021-2022學年期末試卷
- 社區(qū)環(huán)境 課件
- 外研版必修一module2-mynewteachers(reading)課件
- 西華師范大學《裝飾繪畫》2022-2023學年第一學期期末試卷
- 人感染H7N9禽流感流行病學調查方案
- 職業(yè)規(guī)劃大賽機器人工程
- 2024年房顫合并冠心病的抗栓治療pptx
- 五年級科學 《光的反射》 一等獎
- 如何提高個人征信評分
- 《商朝的發(fā)展》課件
- 肺疾病護理的新進展與研究
- 貴州省黔東南州2022-2023學年七年級上學期期末文化水平測試數(shù)學試卷(含答案)
- 《農村三資管理管理》課件
- 中國56個民族簡介(圖片很全)
- 炎癥性腸病完
評論
0/150
提交評論