Abaqus單元選擇、壓力、接觸和網(wǎng)格生成(abaqus軟件公司北京代表處)課件_第1頁
Abaqus單元選擇、壓力、接觸和網(wǎng)格生成(abaqus軟件公司北京代表處)課件_第2頁
Abaqus單元選擇、壓力、接觸和網(wǎng)格生成(abaqus軟件公司北京代表處)課件_第3頁
Abaqus單元選擇、壓力、接觸和網(wǎng)格生成(abaqus軟件公司北京代表處)課件_第4頁
Abaqus單元選擇、壓力、接觸和網(wǎng)格生成(abaqus軟件公司北京代表處)課件_第5頁
已閱讀5頁,還剩101頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ABAQUS/Standard基礎(chǔ)教程ElementSelectionCriteriaAppendix1ABAQUS/Standard基礎(chǔ)教程ElementSeABAQUS/Standard基礎(chǔ)教程內(nèi)容提要ElementsinABAQUSStructuralElements(ShellsandBeams)vs.ContinuumElementsModelingBendingUsingContinuumElements

用實體單元模擬彎曲StressConcentrations應(yīng)力集中Contact接觸IncompressibleMaterials不可壓縮材料MeshGeneration網(wǎng)格生成SolidElementSelectionSummaryABAQUS/Standard基礎(chǔ)教程內(nèi)容提要ElemenABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSABAQUS單元庫中提供廣泛的單元類型,適應(yīng)不同的結(jié)構(gòu)和幾何特征

ThewiderangeofelementsintheABAQUSelementlibraryprovidesflexibilityinmodelingdifferentgeometriesandstructures.Eachelementcanbecharacterizedbyconsideringthefollowing:

單元特性:Family單元類型Numberofnodes節(jié)點數(shù)Degreesoffreedom自由度數(shù)Formulation公式Integration積分ABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程單元類型(Family)Afamilyoffiniteelementsisthebroadestcategoryusedtoclassifyelements.同類型單元有很多相同的基本特。Elementsinthesamefamilysharemanybasicfeatures.同種類單元又有很多變化:Therearemanyvariationswithinafamily.ElementsinABAQUSspecial-purposeelementslikesprings,dashpots,andmassescontinuum(solidelements)shellelementsbeamelementsrigidelementsmembraneelementstrusselementsinfiniteelementsABAQUS/Standard基礎(chǔ)教程單元類型(FamilABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSNumberofnodes

節(jié)點數(shù)(interpolation)Anelement’snumberofnodesdetermineshowthenodaldegreesoffreedomwillbeinterpolatedoverthedomainoftheelement.ABAQUSincludeselementswithbothfirst-andsecond-orderinterpolation.

插值函數(shù)階數(shù)可以為一次或者兩次First-orderinterpolationSecond-orderinterpolationABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程ElementsinABAQUS自由度數(shù)目

DegreesoffreedomTheprimaryvariablesthatexistatthenodesofanelementarethedegreesoffreedominthefiniteelementanalysis.Examplesofdegreesoffreedomare:Displacements位移Rotations轉(zhuǎn)角Temperature溫度Electricalpotential電勢ABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程公式

FormulationThemathematicalformulationusedtodescribethebehaviorofanelementisanotherbroadcategorythatisusedtoclassifyelements.Examplesofdifferentelementformulations:Planestrain平面應(yīng)變Planestress平面應(yīng)力Hybridelements雜交單元Incompatible-modeelements非協(xié)調(diào)元Small-strainshells小應(yīng)變殼元Finite-strainshells有限應(yīng)變殼元Thickshells后殼Thinshells薄殼ElementsinABAQUSABAQUS/Standard基礎(chǔ)教程公式

FormulaABAQUS/Standard基礎(chǔ)教程積分Integration單元的剛度和質(zhì)量在單元內(nèi)的采樣點進行數(shù)值計算,這些采樣點叫做“積分點”

Thestiffnessandmassofanelementarecalculatednumericallyatsamplingpointscalled“integrationpoints”withintheelement.數(shù)值積分的算法影響單元的行為

Thenumericalalgorithmusedtointegratethesevariablesinfluenceshowanelementbehaves.ABAQUS包括完全積分和減縮積分。

ABAQUSincludeselementswithboth“full”and“reduced”integration.ElementsinABAQUSABAQUS/Standard基礎(chǔ)教程積分IntegratABAQUS/Standard基礎(chǔ)教程Fullintegration:

完全積分Theminimumintegrationorderrequiredforexactintegrationofthestrainenergyforanundistortedelementwithlinearmaterialproperties.Reducedintegration:

簡縮積分Theintegrationrulethatisoneorderlessthanthefullintegrationrule.ElementsinABAQUSFirst-

orderinterpolationFullintegration

Second-

order

interpolationReducedintegrationABAQUS/Standard基礎(chǔ)教程FullintegABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSElementnamingconventions:examples單元命名約定B21:Beam,2-D,

1st-orderinterpolationCAX8R:Continuum,AXisymmetric,8-node,ReducedintegrationDC3D4:Diffusion(heattransfer),Continuum,3-D,4-nodeS8RT:Shell,8-node,Reducedintegration,TemperatureCPE8PH:Continuum,Planestrain,8-node,Porepressure,HybridDC1D2E:Diffusion(heattransfer),Continuum,1-D,2-node,ElectricalABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSABAQUS/Standard和ABAQUS/Explicit單元庫的對比

Bothprogramshaveessentiallythesameelementfamilies:continuum,shell,beam,etc.ABAQUS/Standardincludeselementsformanyanalysistypesinadditiontostressanalysis:熱傳導(dǎo),固化soilsconsolidation,聲場acoustics,etc.AcousticelementsarealsoavailableinABAQUS/Explicit.ABAQUS/Standardincludesmanymorevariationswithineachelementfamily.ABAQUS/Explicit包括的單元絕大多數(shù)都為一次單元。例外:二次▲單元和四面體單元and二次beamelementsManyofthesamegeneralelementselectionguidelinesapplytobothprograms.ABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程StructuralElements(ShellsandBeams)vs.ContinuumElementsABAQUS/Standard基礎(chǔ)教程StructuralABAQUS/Standard基礎(chǔ)教程StructuralElements(ShellsandBeams)vs.ContinuumElements實體單元建立有限元模型通常規(guī)模較大,尤其對于三維實體單元如果選用適當?shù)慕Y(jié)構(gòu)單元(shellsandbeams)會得到一個更經(jīng)濟的解決方案模擬相同的問題,用結(jié)構(gòu)體單元通常需要的單元數(shù)量比實體單元少很多要由結(jié)構(gòu)體單元得到合理的結(jié)果需要滿足一定要求:theshellthicknessorthebeamcross-sectiondimensionsshouldbelessthan1/10ofatypicalglobalstructuraldimension,suchas:ThedistancebetweensupportsorpointloadsThedistancebetweengrosschangesincrosssectionThewavelengthofthehighestvibrationmodeABAQUS/Standard基礎(chǔ)教程StructuralABAQUS/Standard基礎(chǔ)教程ShellelementsShellelementsapproximateathree-dimensionalcontinuumwithasurfacemodel.高效率的模擬面內(nèi)彎曲

Modelbendingandin-planedeformationsefficiently.Ifadetailedanalysisofaregionisneeded,alocalthree-dimensionalcontinuummodelcanbeincludedusingmulti-pointconstraintsorsubmodeling.如果需要三維實體單元模擬細節(jié)可以使用子模型ShellmodelofahemisphericaldomesubjectedtoaprojectileimpactStructuralElements(ShellsandBeams)vs.ContinuumElements3-DcontinuumsurfacemodelABAQUS/Standard基礎(chǔ)教程ShellelemABAQUS/Standard基礎(chǔ)教程StructuralElements(ShellsandBeams)vs.ContinuumElementsBeamelements用線簡化三維實體。Beamelementsapproximateathree-dimensionalcontinuumwithalinemodel.高效率模擬彎曲,扭轉(zhuǎn),軸向力。提供很多不同的截面形狀截面形狀可以通過工程常數(shù)定義linemodelframedstructuremodeledusingbeamelements3-DcontinuumABAQUS/Standard基礎(chǔ)教程StructuralABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsPhysicalcharacteristicsofpurebendingTheassumedbehaviorofthematerialthatfiniteelementsattempttomodelis:

純彎狀態(tài):Planecross-sectionsremainplanethroughoutthedeformation.保持平面Theaxialstrainxxvarieslinearlythroughthethickness.Thestraininthethicknessdirectionyyiszeroif=0.Nomembraneshearstrain.Impliesthatlinesparalleltothebeamaxislieonacirculararc.xxABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsModelingbendingusingsecond-ordersolidelements(CPE8,C3D20R,…)二次單元模擬Second-orderfull-andreduced-integrationsolidelementsmodelbendingaccurately:Theaxialstrainequalsthechangeinlengthoftheinitiallyhorizontallines.Thethicknessstrainiszero.Theshearstrainiszero.Linesthatareinitiallyverticaldonotchangelength(impliesyy=0).Becausetheelementedgescanassumeacurvedshape,theanglebetweenthedeformedisoparametriclinesremainsequalto90o(impliesxy=0).isoparametriclinesABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsModelingbendingusingfirst-orderfullyintegratedsolidelements(CPS4,CPE4,C3D8)Theseelementsdetectshearstrainsattheintegrationpoints.Nonphysical;presentsolelybecauseoftheelementformulationused.Overlystiffbehaviorresultsfromenergygoingintoshearingtheelementratherthanbendingit(called“shearlocking”).Becausetheelementedgesmustremainstraight,theanglebetweenthedeformedisoparametriclinesisnotequalto90o(implies).IntegrationpointDonotusetheseelementsinregionsdominatedbybending!ABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsModelingbendingusingfirst-orderreduced-integrationelements(CPE4R,…)Theseelementseliminateshearlocking.However,hourglassingisaconcernwhenusingtheseelements.Onlyoneintegrationpointatthecentroid.Asingleelementthroughthethicknessdoesnotdetectstraininbending.Deformationisazero-energymode(有應(yīng)變形但是沒有應(yīng)變能的現(xiàn)象called“hourglassing”).Changeinlengthiszero(impliesnostrainisdetectedattheintegrationpoint).Bendingbehaviorforasinglefirst-orderreduced-integrationelement.ABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsHourglassingisnotaproblemifyouusemultipleelements—atleastfourthroughthethickness.Eachelementcaptureseithercompressiveortensileaxialstrains,butnotboth.Theaxialstrainsaremeasuredcorrectly.Thethicknessandshearstrainsarezero.Cheapandeffectiveelements.Hourglassingcanpropagateeasilythroughameshoffirst-orderreduced-integrationelements,causingunreliableresults.FourelementsthroughthethicknessNohourglassingABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsDetectingandcontrollinghourglassingHourglassingcanusuallybeseenindeformedshapeplots.Example:Coarseandmediummeshesofasimplysupportedbeamwithacenterpointload.ABAQUShasbuilt-inhourglasscontrolsthatlimittheproblemscausedbyhourglassing.Verifythattheartificialenergyusedtocontrolhourglassingissmall(<1%)relativetotheinternalenergy.Sameloadanddisplacementmagnification(1000×)ABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsUsetheX–YplottingcapabilityinABAQUS/Viewertocomparetheenergiesgraphically.InternalenergyArtificialenergyArtificialenergyInternalenergyTwoelementsthroughthethickness:Ratioofartificialtointernalenergyis2%.Fourelementsthroughthethickness:Ratioofartificialtointernalenergyis0.1%.ABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsModelingbendingusingincompatiblemodeelements(CPS4I,…)Perhapsthemostcost-effectivesolidcontinuumelementsforbending-dominatedproblems.Compromiseincostbetweenthefirst-andsecond-orderreduced-integrationelements,withmanyoftheadvantagesofboth.Modelshearbehaviorcorrectly—noshearstrainsinpurebending.Modelbendingwithonlyoneelementthroughthethickness.Nohourglassmodesandworkwellinplasticityandcontactproblems.Theadvantagesoverreduced-integrationfirst-orderelementsarereducediftheelementsareseverelydistorted;however,allelementsperformlessaccuratelyifseverelydistorted.ABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ModelingBendingUsingContinuumElementsExample:CantileverbeamwithdistortedelementsParalleldistortionTrapezoidaldistortionABAQUS/Standard基礎(chǔ)教程ModelingBABAQUS/Standard基礎(chǔ)教程ElementtypexxyyxyNotesPhysicalbehavior000Second-order000OKFirst-order,fullintegration000ShearlockingFirst-order,reducedintegration000Hourglassingiftoofewelementsthroughthickness000OKifenoughelementsthroughthethicknessIncompatiblemode000OKifnotoverlydistortedModelingBendingUsingContinuumElementsSummaryABAQUS/Standard基礎(chǔ)教程ElementtyABAQUS/Standard基礎(chǔ)教程StressConcentrationsABAQUS/Standard基礎(chǔ)教程StressConABAQUS/Standard基礎(chǔ)教程StressConcentrations二次單元處理應(yīng)力集中問題,明顯優(yōu)于一次單元

Second-orderelementsclearlyoutperformfirst-orderelementsinproblemswithstressconcentrationsandareideallysuitedfortheanalysisof(stationary)cracks.W無論是完全積分還是減縮積分都可以很好的反映應(yīng)力集中

Bothfullyintegratedandreduced-integrationelementsworkwell.減縮積分效率更高,而且計算結(jié)果往往優(yōu)于完全積分。

Reduced-integrationelementstendtobesomewhatmoreefficient—resultsareoftenasgoodorbetterthanfullintegrationatlowercomputationalcost.ABAQUS/Standard基礎(chǔ)教程StressConABAQUS/Standard基礎(chǔ)教程PhysicalmodelModelwithfirst-orderelements—elementfacesarestraightlinesegmentsModelwithsecond-orderelements—

elementfacesarequadraticcurvesStressConcentrations二次單元可以以更少的單元更好的反應(yīng)結(jié)構(gòu)的幾何特征

Second-orderelementscapturegeometricfeatures,suchascurvededges,withfewerelementsthanfirst-orderelements.ABAQUS/Standard基礎(chǔ)教程PhysicalmABAQUS/Standard基礎(chǔ)教程StressConcentrationsBothfirst-andsecond-orderquadsandbricksbecomelessaccuratewhentheirinitialshapeisdistorted.First-orderelementsareknowntobelesssensitivetodistortionthansecond-orderelementsand,thus,areabetterchoiceinproblemswheresignificantmeshdistortionisexpected.Second-ordertrianglesandtetrahedraarelesssensitivetoinitialelementshapethanmostotherelements;however,well-shapedelementsprovidebetterresults.idealokaybaddistortedundistortedABAQUS/Standard基礎(chǔ)教程StressConABAQUS/Standard基礎(chǔ)教程ellipticalshapeStressConcentrationsAtypicalstressconcentrationproblem,aNAFEMSbenchmarkproblem,isshownatright.Theanalysisresultsobtainedwithdifferentelementtypesfollow.PABAQUS/Standard基礎(chǔ)教程ellipticalABAQUS/Standard基礎(chǔ)教程StressConcentrationsFirst-orderelements(includingincompatiblemodeelements)arerelativelypoorinthestudyofstressconcentrationproblems.Second-orderelementssuchasCPS6,CPS8,andCPS8Rgivemuchbetterresults.CoarsemeshFinemeshCPS355.0676.87CPS471.9891.2CPS4I63.4584.37CPS4R43.6760.6CPS696.12101.4CPS891.2100.12CPS8R92.5697.16syyatD(Target=100.0)ElementtypeABAQUS/Standard基礎(chǔ)教程StressConABAQUS/Standard基礎(chǔ)教程StressConcentrationsWell-shaped,second-order,reduced-integrationquadrilateralsandhexahedracanprovidehighaccuracyinstressconcentrationregions.Distortedelementsreducetheaccuracyintheseregions.ABAQUS/Standard基礎(chǔ)教程StressConABAQUS/Standard基礎(chǔ)教程ContactABAQUS/Standard基礎(chǔ)教程ContactABAQUS/Standard基礎(chǔ)教程ContactAlmostallelementtypesareformulatedtoworkwellincontactproblems,withthefollowingexceptions:Second-orderquad/hex

elements“Regular”second-order

tri/tetelements(asopposed

to“modified”tri/tetelements

whosenamesendwiththe

letter“M”)Thedirectionsofthe

consistentnodalforces

resultingfromapressure

loadarenotuniform.ABAQUS/Standard基礎(chǔ)教程ContactAlmABAQUS/Standard基礎(chǔ)教程IncompressibleMaterialsABAQUS/Standard基礎(chǔ)教程IncompressABAQUS/Standard基礎(chǔ)教程IncompressibleMaterialsManynonlinearproblemsinvolveincompressiblematerials

(=0.5)andnearlyincompressiblematerials(>0.475).RubberMetalsatlargeplastic

strainsConventionalfiniteelement

meshesoftenexhibitoverly

stiffbehaviorduetovolumetric

locking,whichismostsevere

whenthesematerialsare

highlyconfined.overlystiffbehaviorofanelastic-plasticmaterialwithvolumetriclockingcorrectbehaviorofanelastic-plasticmaterialExampleoftheeffectofvolumetriclockingABAQUS/Standard基礎(chǔ)教程IncompressABAQUS/Standard基礎(chǔ)教程IncompressibleMaterialsThecauseofvolumetriclockingisthateachintegrationpoint’svolumemustremainalmostconstant,overconstrainingthekinematicallyadmissibledisplacementfield.Forexample,inarefinedthree-dimensionalmeshof8-nodehexahedra,thereis—onaverage—1nodewith3degreesoffreedomperelement.每個單元平均只有1個有三個自由度的節(jié)點Thevolumeateachintegrationpointmustremainfixed.Fullyintegratedhexahedrause8integrationpointsperelement;thus,inthisexamplewehaveasmanyas8constraintsperelement,butonly3degreesoffreedomareavailabletosatisfytheseconstraints.每個單元有8個約束,以至于產(chǎn)生體積鎖死。Themeshisoverconstrained—it“l(fā)ocks.”Volumetriclockingismostpronouncedinfullyintegratedelements.Reduced-integrationelementshavefewervolumetricconstraints.Reducedintegrationeffectivelyeliminatesvolumetriclockinginmanyproblemswithnearlyincompressiblematerial.ABAQUS/Standard基礎(chǔ)教程IncompressABAQUS/Standard基礎(chǔ)教程IncompressibleMaterialsFullyincompressiblematerialsmodeledwithsolidelementsmustusethe“hybrid”formulation(elementswhosenamesendwiththeletter

“H”).Inthisformulationthepressurestressistreatedasanindependentlyinterpolatedbasicsolutionvariable,coupledtothedisplacementsolutionthroughtheconstitutivetheory.Hybridelementsintroducemorevariablesintotheproblemtoalleviatethevolumetriclockingproblem.Theextravariablesalsomakethemmoreexpensive.TheABAQUSelementlibraryincludeshybridversionsofallcontinuumelements(exceptplanestresselements,wheretheyarenotneeded).ABAQUS/Standard基礎(chǔ)教程IncompressABAQUS/Standard基礎(chǔ)教程Hybridelementsareonlynecessaryfor:以不可壓縮材料為主的網(wǎng)格,如橡膠材料。Allmesheswithstrictlyincompressiblematerials,suchasrubber.精密的網(wǎng)格,使用減縮積分仍然有l(wèi)ocking的網(wǎng)格,比如彈塑性材料完全進入塑性階段

Refinedmeshesofreduced-integrationelementsthatstillshowvolumetriclockingproblems.Suchproblemsarepossiblewithelastic-plasticmaterialsstrainedfarintotheplasticrange.即使使用了hybrid單元一次三角形或者四面體單元仍然有過度約束。因此建議這類單元使用的比例要小,可以作為六面體單元的“填充物”使用。Evenwithhybridelementsameshoffirst-ordertrianglesandtetrahedraisoverconstrainedwhenmodelingfullyincompressiblematerials.Hence,theseelementsarerecommendedonlyforuseas“fillers”inquadrilateralorbrick-typemesheswithsuchmaterial.IncompressibleMaterialsABAQUS/Standard基礎(chǔ)教程HybrideleABAQUS/Standard基礎(chǔ)教程MeshGenerationABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程MeshGenerationQuad/Hexvs.Tri/TetElementsOfparticularimportancewhengeneratingameshisthedecisionregardingwhethertousequad/hexortri/tetelements.Quad/hexelementsshouldbeusedwhereverpossible.Theygivethebestresultsfortheminimumcost.Whenmodelingcomplexgeometries,however,theanalystoftenhaslittlechoicebuttomeshwithtriangularandtetrahedralelements.TurbinebladewithplatformmodeledwithtetrahedralelementsABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程MeshGenerationFirst-ordertri/tetelements(CPE3,CPS3,CAX3,C3D4,C3D6)arepoorelements;theyhavethefollowingproblems:Poorconvergencerate.Theytypicallyrequireveryfinemeshestoproducegoodresults.Volumetriclockingwithincompressibleornearlyincompressiblematerials,evenusingthe“hybrid”formulation.Theseelementsshouldbeusedonlyasfillersinregionsfarfromanyareaswhereaccurateresultsareneeded.ABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程Equivalentnodalforcescreatedbyuniformpressureonthefaceofaregularsecond-ordertetrahedralelementMeshGeneration“Regular”second-ordertri/tetelements(CPE6,CPS6,CAX6,C3D10)cannotbeusedtomodelcontact.Underuniformpressurethecontactforcesaresignificantlydifferentatthecornerandmidsidenodes.Forsmall-displacementproblemswithoutcontacttheseelementsprovidereasonableresults.ABAQUS/Standard基礎(chǔ)教程EquivalentABAQUS/Standard基礎(chǔ)教程MeshGenerationModifiedsecond-ordertri/tetelements(C3D10M,etc.)alleviatetheproblemsofothertri/tetelements.Goodconvergencerate—closetoconvergencerateofsecond-orderquad/hexelements.Minimalshearorvolumetriclocking.Canbeusedtomodelincompressibleornearlyincompressiblematerialsinthehybridformulation(C3D10MH).Theseelementsarerobustduringfinitedeformation.Uniformcontactpressureallowstheseelementstomodelcontactaccurately.Usethem!ABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程MeshGenerationMeshrefinementandconvergenceUseasufficientlyrefinedmeshtoensurethattheresultsfromyourABAQUSsimulationareadequate.Coarsemeshestendtoyieldinaccurateresults.Thecomputerresourcesrequiredtorunyourjobincreasewiththelevelofmeshrefinement.Itisrarelynecessarytouseauniformlyrefinedmeshthroughoutthestructurebeinganalyzed.Useafinemeshonlyinareasofhighgradientsandacoarsermeshinareasoflowgradients.Youcanoftenpredictregionsofhighgradientsbeforegeneratingthemesh.Usehandcalculations,experience,etc.Alternatively,youcanusecoarsemeshresultstoidentifyhighgradientregions.ABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程MeshGenerationSomerecommendations:Minimizemeshdistortionasmuchaspossible.Aminimumoffourquadraticelementsper90oshouldbeusedaroundacircularhole.Aminimumoffourelementsshouldbeusedthroughthethicknessofastructureiffirst-order,reduced-integrationsolidelementsareusedtomodelbending.Otherguidelinescanbedevelopedbasedonexperiencewithagivenclassofproblem.ABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程MeshGenerationItisgoodpracticetoperformameshconvergencestudy.Simulatetheproblemusingprogressivelyfinermeshes,andcomparetheresults.ThemeshdensitycanbechangedveryeasilyusingABAQUS/CAEsincethedefinitionoftheanalysismodelisbasedonthegeometryofthestructure.Thiswillbediscussedfurtherinthenextlecture.Whentwomeshesyieldnearlyidenticalresults,theresultsaresaidtohave“converged.”Thisprovidesincreasedconfidenceinyourresults.ABAQUS/Standard基礎(chǔ)教程MeshGenerABAQUS/Standard基礎(chǔ)教程SolidElement

SelectionSummaryABAQUS/Standard基礎(chǔ)教程SolidElemABAQUS/Standard基礎(chǔ)教程SolidElementSelectionSummaryClassofproblemBestelementchoiceAvoidusingGeneralcontactbetweendeformablebodiesFirst-orderquad/hexSecond-orderquad/hexContactwithbendingIncompatiblemodeFirst-orderfullyintegratedquad/hexorsecond-orderquad/hexBending(nocontact)Second-orderquad/hexFirst-orderfullyintegratedquad/hex StressconcentrationSecond-orderFirst-orderNearlyincompressible(n>0.475orlargestrainplasticityepl>10%)First-orderelementsorsecond-orderreduced-integrationelementsSecond-orderfullyintegratedABAQUS/Standard基礎(chǔ)教程SolidElemABAQUS/Standard基礎(chǔ)教程SolidElementSelectionSummaryClassofproblemBestelementchoiceAvoidusingCompletelyincompressible(rubbern=0.5)Hybridquad/hex,first-orderiflargedeformationsareanticipatedBulkmetalforming(highmeshdistortion)First-orderreduced-integrationquad/hexSecond-orderquad/hexComplicatedmodelgeometry(linearmaterial,nocontact)Second-orderquad/hexifpossible(ifnotoverlydistorted)orsecond-ordertet/tri(becauseofmeshingdifficulties)Complicatedmodelgeometry(nonlinearproblemorcontact)First-orderquad/hexifpossible(ifnotoverlydistorted)ormodifiedsecond-ordertet/tri(becauseofmeshingdifficulties)Naturalfrequency(lineardynamics)Second-orderNonlineardynamic(impact)First-orderSecond-orderABAQUS/Standard基礎(chǔ)教程SolidElem演講完畢,謝謝觀看!演講完畢,謝謝觀看!ABAQUS/Standard基礎(chǔ)教程ElementSelectionCriteriaAppendix1ABAQUS/Standard基礎(chǔ)教程ElementSeABAQUS/Standard基礎(chǔ)教程內(nèi)容提要ElementsinABAQUSStructuralElements(ShellsandBeams)vs.ContinuumElementsModelingBendingUsingContinuumElements

用實體單元模擬彎曲StressConcentrations應(yīng)力集中Contact接觸IncompressibleMaterials不可壓縮材料MeshGeneration網(wǎng)格生成SolidElementSelectionSummaryABAQUS/Standard基礎(chǔ)教程內(nèi)容提要ElemenABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSABAQUS單元庫中提供廣泛的單元類型,適應(yīng)不同的結(jié)構(gòu)和幾何特征

ThewiderangeofelementsintheABAQUSelementlibraryprovidesflexibilityinmodelingdifferentgeometriesandstructures.Eachelementcanbecharacterizedbyconsideringthefollowing:

單元特性:Family單元類型Numberofnodes節(jié)點數(shù)Degreesoffreedom自由度數(shù)Formulation公式Integration積分ABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程單元類型(Family)Afamilyoffiniteelementsisthebroadestcategoryusedtoclassifyelements.同類型單元有很多相同的基本特。Elementsinthesamefamilysharemanybasicfeatures.同種類單元又有很多變化:Therearemanyvariationswithinafamily.ElementsinABAQUSspecial-purposeelementslikesprings,dashpots,andmassescontinuum(solidelements)shellelementsbeamelementsrigidelementsmembraneelementstrusselementsinfiniteelementsABAQUS/Standard基礎(chǔ)教程單元類型(FamilABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSNumberofnodes

節(jié)點數(shù)(interpolation)Anelement’snumberofnodesdetermineshowthenodaldegreesoffreedomwillbeinterpolatedoverthedomainoftheelement.ABAQUSincludeselementswithbothfirst-andsecond-orderinterpolation.

插值函數(shù)階數(shù)可以為一次或者兩次First-orderinterpolationSecond-orderinterpolationABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程ElementsinABAQUS自由度數(shù)目

DegreesoffreedomTheprimaryvariablesthatexistatthenodesofanelementarethedegreesoffreedominthefiniteelementanalysis.Examplesofdegreesoffreedomare:Displacements位移Rotations轉(zhuǎn)角Temperature溫度Electricalpotential電勢ABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程公式

FormulationThemathematicalformulationusedtodescribethebehaviorofanelementisanotherbroadcategorythatisusedtoclassifyelements.Examplesofdifferentelementformulations:Planestrain平面應(yīng)變Planestress平面應(yīng)力Hybridelements雜交單元Incompatible-modeelements非協(xié)調(diào)元Small-strainshells小應(yīng)變殼元Finite-strainshells有限應(yīng)變殼元Thickshells后殼Thinshells薄殼ElementsinABAQUSABAQUS/Standard基礎(chǔ)教程公式

FormulaABAQUS/Standard基礎(chǔ)教程積分Integration單元的剛度和質(zhì)量在單元內(nèi)的采樣點進行數(shù)值計算,這些采樣點叫做“積分點”

Thestiffnessandmassofanelementarecalculatednumericallyatsamplingpointscalled“integrationpoints”withintheelement.數(shù)值積分的算法影響單元的行為

Thenumericalalgorithmusedtointegratethesevariablesinfluenceshowanelementbehaves.ABAQUS包括完全積分和減縮積分。

ABAQUSincludeselementswithboth“full”and“reduced”integration.ElementsinABAQUSABAQUS/Standard基礎(chǔ)教程積分IntegratABAQUS/Standard基礎(chǔ)教程Fullintegration:

完全積分Theminimumintegrationorderrequiredforexactintegrationofthestrainenergyforanundistortedelementwithlinearmaterialproperties.Reducedintegration:

簡縮積分Theintegrationrulethatisoneorderlessthanthefullintegrationrule.ElementsinABAQUSFirst-

orderinterpolationFullintegration

Second-

order

interpolationReducedintegrationABAQUS/Standard基礎(chǔ)教程FullintegABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSElementnamingconventions:examples單元命名約定B21:Beam,2-D,

1st-orderinterpolationCAX8R:Continuum,AXisymmetric,8-node,ReducedintegrationDC3D4:Diffusion(heattransfer),Continuum,3-D,4-nodeS8RT:Shell,8-node,Reducedintegration,TemperatureCPE8PH:Continuum,Planestrain,8-node,Porepressure,HybridDC1D2E:Diffusion(heattransfer),Continuum,1-D,2-node,ElectricalABAQUS/Standard基礎(chǔ)教程ElementsiABAQUS/Standard基礎(chǔ)教程ElementsinABAQUSABAQUS/Standard和ABAQUS/Explicit單元庫的對比

Bothprogramshaveessen

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論