版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:,,則為()A., B.,C., D.,2.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.3.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則4.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.5.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.6.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.7.等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.78.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.9.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.10.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.11.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實數(shù),則()A. B. C. D.12.設(shè)點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若方程的解為,(),則_______;_______.14.已知復(fù)數(shù),且滿足(其中為虛數(shù)單位),則____.15.拋物線上到其焦點的距離為的點的個數(shù)為________.16.在平面直角坐標(biāo)系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點從左到右依次為,,…,若點的橫坐標(biāo)為1,則點的橫坐標(biāo)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.18.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,證明:.19.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)記數(shù)列的前n項和為,,求數(shù)列的前n項和.20.(12分)已知拋物線E:y2=2px(p>0),焦點F到準(zhǔn)線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.21.(12分)已知圓外有一點,過點作直線.(1)當(dāng)直線與圓相切時,求直線的方程;(2)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長.22.(10分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.2.D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.3.B【解析】
根據(jù)空間中線線、線面位置關(guān)系,逐項判斷即可得出結(jié)果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.4.A【解析】
根據(jù)復(fù)數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點睛】本題考查復(fù)數(shù)的運算和復(fù)數(shù)的分類,屬基礎(chǔ)題.5.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.6.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項.點睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.7.B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項公式求得公差.【詳解】在等差數(shù)列的前項和為,則則故選:B【點睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.8.D【解析】
由復(fù)數(shù)的綜合運算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復(fù)數(shù)的運算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.9.A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.10.B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.11.B【解析】
可設(shè),將化簡,得到,由復(fù)數(shù)為實數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點睛】本題考查復(fù)數(shù)的模長、除法運算,由復(fù)數(shù)的類型求解對應(yīng)參數(shù),屬于基礎(chǔ)題12.C【解析】
設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時對和的關(guān)系的處理是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出在上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因為,所以關(guān)于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導(dǎo)公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯點在于沒有正確判斷的取值范圍,導(dǎo)致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14.【解析】
計算出,兩個復(fù)數(shù)相等,實部與實部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點睛】此題考查復(fù)數(shù)的基本運算和概念辨析,需要熟練掌握復(fù)數(shù)的運算法則.15.【解析】
設(shè)拋物線上任意一點的坐標(biāo)為,根據(jù)拋物線的定義求得,并求出對應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線上任意一點的坐標(biāo)為,拋物線的準(zhǔn)線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數(shù)為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標(biāo),考查計算能力,屬于基礎(chǔ)題.16.1【解析】
當(dāng)時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標(biāo)為1,即當(dāng)時,,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當(dāng)時,(1),即點的橫坐標(biāo)為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力及思維能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),,直線的傾斜角為(2)【解析】
(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標(biāo)方程后可得傾斜角;(2)求出直線與軸交點,用參數(shù)表示點坐標(biāo),求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標(biāo)為則當(dāng)且僅當(dāng)時,取最大值.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,屬于基礎(chǔ)題.求兩點間距離的最值時,用參數(shù)方程設(shè)點的坐標(biāo)可把問題轉(zhuǎn)化為三角函數(shù)問題.18.(1);(2)見解析.【解析】
(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項公式計算即可;(2)先求出數(shù)列的通項,再利用裂項相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項3為公差的等差數(shù)列,所以,即.(2)因為,則,所以,又是遞增數(shù)列,所以,綜上,.【點睛】本題考查由遞推公式求數(shù)列通項公式、裂項相消法求數(shù)列的和,考查學(xué)生的計算能力,是一道基礎(chǔ)題.19.(1)見解析;(2)【解析】
(1)因為,所以,所以,所以數(shù)列是等差數(shù)列,設(shè)數(shù)列的公差為,由可得,因為成等比數(shù)列,所以,所以,所以,因為,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.20.(1)y2=6x(2).【解析】
(1)根據(jù)拋物線定義,寫出焦點坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點坐標(biāo)表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據(jù)焦點和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達定理整體代入,拋物線中需要考慮設(shè)點坐標(biāo)的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.21.(1)或(2).【解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當(dāng)斜率不存在時,直線的方程為,滿足題意當(dāng)斜率存在時,設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當(dāng)直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新型城鎮(zhèn)化建設(shè)渣土處理承包協(xié)議3篇
- 二零二五年度高空監(jiān)測設(shè)備搭設(shè)鋼管腳手架安裝合同3篇
- 2025版高端美甲店經(jīng)營管理權(quán)轉(zhuǎn)讓合同樣本4篇
- 2025年度個人汽車租賃售后服務(wù)合同范本7篇
- 二零二五年度模具設(shè)計與制造一體化服務(wù)合同2篇
- 2025年度餐飲廚房承包項目合同范本(含廚師團隊)4篇
- 二零二五年度特色美食街廚師技能承包合作協(xié)議3篇
- 個人電子煙零售店加盟合同(2024年度)3篇
- 二零二五年度城市綠化用地承包合同范本4篇
- 2025年度個人房產(chǎn)抵押借款合同修訂版8篇
- 2024年全國甲卷高考化學(xué)試卷(真題+答案)
- 汽車修理廠管理方案
- 人教版小學(xué)數(shù)學(xué)一年級上冊小學(xué)生口算天天練
- 三年級數(shù)學(xué)添括號去括號加減簡便計算練習(xí)400道及答案
- 蘇教版五年級上冊數(shù)學(xué)簡便計算300題及答案
- 澳洲牛肉行業(yè)分析
- 老客戶的開發(fā)與技巧課件
- 計算機江蘇對口單招文化綜合理論試卷
- 成人學(xué)士學(xué)位英語單詞(史上全面)
- KAPPA-實施方法課件
- GB/T 13813-2023煤礦用金屬材料摩擦火花安全性試驗方法和判定規(guī)則
評論
0/150
提交評論