上海市虹口區(qū)名校2023年中考數(shù)學(xué)模擬預(yù)測題含答案解析_第1頁
上海市虹口區(qū)名校2023年中考數(shù)學(xué)模擬預(yù)測題含答案解析_第2頁
上海市虹口區(qū)名校2023年中考數(shù)學(xué)模擬預(yù)測題含答案解析_第3頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

上海市虹口區(qū)名校2023年中考數(shù)學(xué)模擬預(yù)測題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、測試卷卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.2.某班體育委員對本班學(xué)生一周鍛煉(單位:小時)進行了統(tǒng)計,繪制了如圖所示的折線統(tǒng)計圖,則該班這些學(xué)生一周鍛煉時間的中位數(shù)是()A.10 B.11 C.12 D.133.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.4.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱5.下列各數(shù)中負(fù)數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)36.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.397.小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300km;②小路的車比小帶的車晚出發(fā)1h,卻早到1h;③小路的車出發(fā)后2.5h追上小帶的車;④當(dāng)小帶和小路的車相距50km時,t=或t=.其中正確的結(jié)論有()A.①②③④ B.①②④C.①② D.②③④8.如圖,△ABC中,AB=AC,BC=12cm,點D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點E、F分別落在邊AB、BC上,則△EBF的周長是()cm.A.7 B.11 C.13 D.169.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.10.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.811.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算12.的值是()A.1 B.﹣1 C.3 D.﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.甲、乙兩人分別從A,B兩地相向而行,他們距B地的距離s(km)與時間t(h)的關(guān)系如圖所示,那么乙的速度是__km/h.14.若關(guān)于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.15.如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.16.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).17.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.18.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.若將這種水果每斤的售價降低x元,則每天的銷售量是斤(用含x的代數(shù)式表示);銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?20.(6分)閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(shè)(其中均為整數(shù)),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結(jié)論,找一組正整數(shù),填空:+=(+)2;(3)若,且均為正整數(shù),求的值.21.(6分)撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調(diào)查共抽取了多少名學(xué)生?求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.22.(8分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉(zhuǎn),使PM交AB邊于點E,PN交AD邊于點F,當(dāng)點E與點B重合時,停止旋轉(zhuǎn).在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當(dāng)△AEB為直角三角形時的值.23.(8分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點F,設(shè)AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當(dāng)∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。24.(10分)如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.求一次函數(shù)的表達式;若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.25.(10分)如圖,∠A=∠B=30°(1)尺規(guī)作圖:過點C作CD⊥AC交AB于點D;(只要求作出圖形,保留痕跡,不要求寫作法)(2)在(1)的條件下,求證:BC2=BD?AB.26.(12分)如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,將此問題轉(zhuǎn)化為函數(shù)問題解決.小華假設(shè)AE的長度為xcm,線段DE的長度為ycm.(當(dāng)點C與點A重合時,AE的長度為0cm),對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.下面是小何的探究過程,請補充完整:(說明:相關(guān)數(shù)據(jù)保留一位小數(shù)).(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7當(dāng)x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:(2)在圖2中建立平面直角坐標(biāo)系,描出補全后的表中各組對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;(3)結(jié)合畫出的函數(shù)圖象解決問題,當(dāng)DE=2OE時,AE的長度約為cm.27.(12分)由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號的防霧霾口罩共20萬只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價及工人生產(chǎn)提成如表:若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產(chǎn)品分別是多少萬只?公司實行計件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元,應(yīng)怎樣安排甲、乙兩種型號的產(chǎn)量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【答案解析】

混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【題目詳解】設(shè)瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【答案點睛】本題主要考查分式的混合運算,找到相應(yīng)的等量關(guān)系是解決本題的關(guān)鍵.2、B【答案解析】

根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本班的學(xué)生數(shù),從而可以求得該班這些學(xué)生一周鍛煉時間的中位數(shù),本題得以解決.【題目詳解】由統(tǒng)計圖可得,本班學(xué)生有:6+9+10+8+7=40(人),該班這些學(xué)生一周鍛煉時間的中位數(shù)是:11,故選B.【答案點睛】本題考查折線統(tǒng)計圖、中位數(shù),解答本題的關(guān)鍵是明確題意,會求一組數(shù)據(jù)的中位數(shù).3、D【答案解析】

根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【題目詳解】分兩種情況討論:①當(dāng)k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當(dāng)k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標(biāo)系中的圖象大致是D.故選D.【答案點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.4、A【答案解析】

側(cè)面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【題目詳解】解:觀察圖形可知,這個幾何體是三棱柱.

故選A.【答案點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關(guān)鍵..5、B【答案解析】

首先利用相反數(shù),絕對值的意義,乘方計算方法計算化簡,進一步利用負(fù)數(shù)的意義判定即可.【題目詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負(fù)數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【答案點睛】此題考查負(fù)數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計算方法計算化簡是解決問題的關(guān)鍵.6、D【答案解析】

原式利用平方根、立方根定義計算即可求出值.【題目詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【答案點睛】此題考查了立方根,以及算術(shù)平方根,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.7、C【答案解析】

觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得小帶、小路兩車離開A城的距離y與時間t的關(guān)系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.【題目詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發(fā)1h后出發(fā)的,且用時3h,即比小帶早到1h,∴①②都正確;設(shè)小帶車離開A城的距離y與t的關(guān)系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設(shè)小路車離開A城的距離y與t的關(guān)系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y(tǒng)小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標(biāo)為t=2.5,此時小路出發(fā)時間為1.5h,即小路車出發(fā)1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當(dāng)100-40t=50時,可解得t=,當(dāng)100-40t=-50時,可解得t=,又當(dāng)t=時,y小帶=50,此時小路還沒出發(fā),當(dāng)t=時,小路到達B城,y小帶=250.綜上可知當(dāng)t的值為或或或時,兩車相距50km,∴④不正確.故選C.【答案點睛】本題主要考查一次函數(shù)的應(yīng)用,掌握一次函數(shù)圖象的意義是解題的關(guān)鍵,特別注意t是甲車所用的時間.8、C【答案解析】

直接利用平移的性質(zhì)得出EF=DC=4cm,進而得出BE=EF=4cm,進而求出答案.【題目詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長為:4+4+5=13(cm).故選C.【答案點睛】此題主要考查了平移的性質(zhì),根據(jù)題意得出BE的長是解題關(guān)鍵.9、D【答案解析】

當(dāng)k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【題目詳解】解:∵當(dāng)k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【答案點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì).關(guān)鍵是明確系數(shù)與圖象的位置的聯(lián)系.10、D【答案解析】分析:根據(jù)二元一次方程組的解,直接代入構(gòu)成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據(jù)題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數(shù)是解題關(guān)鍵,比較簡單,是常考題型.11、B【答案解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【題目詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【答案點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.12、B【答案解析】

直接利用立方根的定義化簡得出答案.【題目詳解】因為(-1)3=-1,=﹣1.故選:B.【答案點睛】此題主要考查了立方根,正確把握立方根的定義是解題關(guān)鍵.,二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3.6【答案解析】分析:根據(jù)題意,甲的速度為6km/h,乙出發(fā)后2.5小時兩人相遇,可以用方程思想解決問題.詳解:由題意,甲速度為6km/h.當(dāng)甲開始運動時相距36km,兩小時后,乙開始運動,經(jīng)過2.5小時兩人相遇.設(shè)乙的速度為xkm/h4.5×6+2.5x=36解得x=3.6故答案為3.6點睛:本題為一次函數(shù)實際應(yīng)用問題,考查一次函數(shù)圖象在實際背景下所代表的意義.解答這類問題時,也可以通過構(gòu)造方程解決問題.14、且【答案解析】測試卷解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:15、①②③④【答案解析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點M是對角線BD上的點,∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點睛:本題考查了正方形的性質(zhì),四點共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線并運用有關(guān)知識理清圖形中西安段間的關(guān)系,證明三角形全等是解決問題的關(guān)鍵.16、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,)【答案解析】

(1)將點A和點C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標(biāo);(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標(biāo)即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標(biāo),從而得到點P的縱坐標(biāo),然后由拋物線的解析式可求得點P的坐標(biāo).【題目詳解】解:(1)∵將點A和點C的坐標(biāo)代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標(biāo)為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當(dāng)∠ACP1=90°.由(1)可知點A的坐標(biāo)為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點A的坐標(biāo)代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標(biāo)為(1,﹣4).②當(dāng)∠P2AC=90°時.設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標(biāo)為(﹣2,5).綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標(biāo)是,∴,解得:x=,∴當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,).17、.【答案解析】

延長FP交AB于M,當(dāng)FP⊥AB時,點P到AB的距離最小.運用勾股定理求解.【題目詳解】解:如圖,延長FP交AB于M,當(dāng)FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【答案點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關(guān)鍵是確定出點P的位置.18、【答案解析】

由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【題目詳解】解:由直線a∥b∥c,根據(jù)平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.【答案點睛】此題考查了平行線分線段成比例定理.題目比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)100+200x;(2)1.【答案解析】測試卷分析:(1)銷售量=原來銷售量﹣下降銷售量,列式即可得到結(jié)論;(2)根據(jù)銷售量×每斤利潤=總利潤列出方程求解即可得到結(jié)論.測試卷解析:(1)將這種水果每斤的售價降低x元,則每天的銷售量是100+×20=100+200x斤;(2)根據(jù)題意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:張阿姨需將每斤的售價降低1元.考點:1.一元二次方程的應(yīng)用;2.銷售問題;3.綜合題.20、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【答案解析】

(1)∵,∴,∴a=m2+3n2,b=2mn.故答案為m2+3n2,2mn.(2)設(shè)m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案為1,2,1,2(答案不唯一).(3)由題意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n為正整數(shù),∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.21、(1)50;(2)16;(3)56(4)見解析【答案解析】

(1)用A等級的頻數(shù)除以它所占的百分比即可得到樣本容量;

(2)用總?cè)藬?shù)分別減去A、B、D等級的人數(shù)得到C等級的人數(shù),然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生數(shù);

(4)畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出抽取的兩人恰好都是男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】(1)10÷20%=50(名)答:本次抽樣調(diào)查共抽取了50名學(xué)生.(2)50-10-20-4=16(名)答:測試結(jié)果為C等級的學(xué)生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有56名.(4)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好都是男生的結(jié)果數(shù)為2,

所以抽取的兩人恰好都是男生的概率=.【答案點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.22、(1)①特殊情形:;②類比探究:是定值,理由見解析;(2)或【答案解析】

(1)證明,即可求解;(2)點E與點B重合時,四邊形EBFA為矩形,即可求解;(3)分時、時,兩種情況分別求解即可.【題目詳解】解:(1),,故答案為;(2)點E與點B重合時,四邊形EBFA為矩形,則為定值;(3)①當(dāng)時,如圖3,過點E、F分別作直線BC的垂線交于點G,H,由(1)知:,,同理,.則,則;②當(dāng)時,如圖4,,則,,則,,則,故或.【答案點睛】本題考查的圓知識的綜合運用,涉及到解直角三角形的基本知識,其中(3),要注意分類求解,避免遺漏.23、135°m+n【答案解析】測試卷分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.測試卷解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點G,∴∠EGB=90°,∵在等腰直角△ABE,∠BAE=90°,AB=m=,∴∠ABE=45°,BE=2,∵∠ABC=75°,∴∠EBG=180°-75°-45°=60°,∴BG=1,EG=,∴GC=BG+BC=4,∴CE=,∵△EAC≌△BAD,∴BD=EC=;(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點共線時,EC最大=BE+BC=,∵BD=EC,∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,即當(dāng)∠ABC=135°時,BD最大=;(4)∵△ABD≌△AEC,∴∠AEC=∠ABD,∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,∴∠ABD+∠ABE+∠CEB=90°,∴∠BFE=180°-90°=90°,∴EF2+BF2=BE2,又∵在等腰Rt△ABE中,BE2=2AE2,∴2AE2=EF2+BF2.點睛:(1)解本題第2小題的關(guān)鍵是過點E作EG⊥CB的延長線于點G,即可由已知條件求得BE的長,進一步求得BG和EG的長就可在Rt△EGC中求得EC的長了,結(jié)合(1)中所證的全等三角形即可得到BD的長了;(2)解第3小題時,由題意易知,當(dāng)AB和BC的值確定后,BE的值就確定了,則由題意易得當(dāng)E、B、C三點共線時,EC=EB+BC=是EC的最大值了.24、(1);(2)1或9.【答案解析】測試卷分析:(1)把A(-2,b)的坐標(biāo)分別代入一次函數(shù)和反比例函數(shù)表達式,求得k、b的值,即可得一次函數(shù)的解析式;(2)直線AB向下平移m(m>0)個單位長度后,直線AB對應(yīng)的函數(shù)表達式為y=x+5-m,根據(jù)平移后的圖象與反比例函數(shù)的圖象有且只有一個公共點,把兩個解析式聯(lián)立得方程組,解方程組得一個一元二次方程,令△=0,即可求得m的值.測試卷解析:(1)根據(jù)題意,把A(-2,b)的坐標(biāo)分別代入一次函數(shù)和反比例函數(shù)表達式,得,解得,所以一次函數(shù)的表達式為y=x+5.(2)將直線AB向下平移m(m>0)個單位長度后,直線AB對應(yīng)的函數(shù)表達式為y=x+5-m.由得,x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論