版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知實數(shù),,,則,,的大小關系為()A. B.C. D.2.如圖是某班名學生身高的頻率分布直方圖,那么該班身高在區(qū)間內(nèi)的學生人數(shù)為A. B.C. D.3.已知函數(shù)是偶函數(shù),且,則()A. B.0C.2 D.44.下列函數(shù)中,值域是的是A. B.C. D.5.函數(shù)f(x)=ax(a>0,a≠1)對于任意的實數(shù)xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)6.已知函數(shù)的定義域為,命題為奇函數(shù),命題,那么是的()A.充分必要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件7.已知偶函數(shù)在單調(diào)遞減,則使得成立的的取值范圍是A. B.C. D.8.已知集合,a=3.則下列關系式成立的是A.aAB.aAC.{a}AD.{a}∈A9.已知為三角形內(nèi)角,且,若,則關于的形狀的判斷,正確的是A.直角三角形 B.銳角三角形C.鈍角三角形 D.三種形狀都有可能10.若直線與互相平行,則()A.4 B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知扇形的半徑為2,面積為,則該扇形的圓心角的弧度數(shù)為______.12.已知,,,則________13.在日常生活中,我們會看到如圖所示的情境,兩個人共提一個行李包.假設行李包所受重力為G,作用在行李包上的兩個拉力分別為,,且,與的夾角為.給出以下結論:①越大越費力,越小越省力;②的范圍為;③當時,;④當時,.其中正確結論的序號是______.14.已知,則函數(shù)的最大值為__________.15.命題“,”的否定是___________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù)是定義在1,1上的奇函數(shù),且.(1)求m,n的值;(2)判斷在1,1上的單調(diào)性,并用定義證明;(3)設,若對任意的,總存在,使得成立,求實數(shù)k的值.17.已知集合,,(1)求;(2)若,求m的取值范圍18.已知函數(shù),其定義域為D(1)求D;(2)設,若關于的方程在內(nèi)有唯一零點,求的取值范圍19.通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標準地震”的振幅(使用標準地震振幅是為了修正測震儀距實際震中的距離造成的偏差)(1)假設在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標準地震的振幅是0.001,計算這次地震的震級(精確到0.1);(2)5級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?(以下數(shù)據(jù)供參考:,)20.已知圓與直線相切,圓心在直線上,且直線被圓截得的弦長為.(1)求圓的方程,并判斷圓與圓的位置關系;(2)若橫截距為-1且不與坐標軸垂直的直線與圓交于兩點,在軸上是否存在定點,使得,若存在,求出點坐標,若不存在,說明理由.21.已知集合,集合.(1)當時,求;(2)命題,命題,若q是p的必要條件,求實數(shù)a的取值范圍.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較a三個數(shù)與0、1的大小關系,由此可得出a、b、c大小關系.【詳解】解析:由題,,,即有.故選:A.2、C【解析】身高在區(qū)間內(nèi)的頻率為人數(shù)為,選C.點睛:頻率分布直方圖中小長方形面積等于對應區(qū)間的概率,所有小長方形面積之和為1;頻率分布直方圖中組中值與對應區(qū)間概率乘積的和為平均數(shù);頻率分布直方圖中小長方形面積之比等于對應概率之比,也等于對應頻數(shù)之比.3、D【解析】由偶函數(shù)定義可得,代入可求得結果.【詳解】為偶函數(shù),,,故選:D4、D【解析】分別求出各函數(shù)的值域,即可得到答案.【詳解】選項中可等于零;選項中顯然大于1;選項中,,值域不是;選項中,故.故選D.【點睛】本題考查函數(shù)的性質(zhì)以及值域的求法.屬基礎題.5、B【解析】由指數(shù)的運算性質(zhì)得到ax+y【詳解】解:由函數(shù)f(x)=a得f(x+y)=a所以函數(shù)f(x)=ax(a>0,a≠1)對于任意的實數(shù)x、y故選:B.【點睛】本題考查了指數(shù)的運算性質(zhì),是基礎題.6、C【解析】根據(jù)奇函數(shù)的性質(zhì)及命題充分必要性的概念直接判斷.【詳解】為奇函數(shù),則,但,無法得函數(shù)為奇函數(shù),例如,滿足,但是為偶函數(shù),所以是的充分不必要條件,故選:C.7、C【解析】∵函數(shù)為偶函數(shù),∴∵函數(shù)在單調(diào)遞減∴,即∴使得成立的的取值范圍是故選C點睛:這個題目考查的是抽象函數(shù)的單調(diào)性和奇偶性,在不等式中的應用.解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應在外層函數(shù)的定義域內(nèi).8、C【解析】集合,,所以{a}A故選C.9、C【解析】利用同角平方關系可得,,結合可得,從而可得的取值范圍,進而可判斷三角形的形狀【詳解】解:,,為三角形內(nèi)角,,為鈍角,即三角形為鈍角三角形故選C【點睛】本題主要考查了利用同角平方關系的應用,其關鍵是變形之后從的符號中判斷的取值范圍,屬于三角函數(shù)基本技巧的運用10、B【解析】根據(jù)直線平行,即可求解.【詳解】因為直線與互相平行,所以,得當時,兩直線重合,不符合題意;當時,符合題意故選:B.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】由扇形的面積公式和弧度制的定義,即可得出結果.【詳解】由扇形的面積公式可得,所以圓心角為.故答案為:12、【解析】由誘導公式將化為,再由,根據(jù)兩角差的正弦公式,即可求出結果.【詳解】因,所以,,又,,所以,,所以,,所以.故答案為【點睛】本題主要考查簡單的三角恒等變換,熟記兩角差的正弦公式以及誘導公式,即可求解,屬于常考題型.13、①④.【解析】根據(jù)為定值,求出,再對題目中的命題分析、判斷正誤即可.【詳解】解:對于①,由為定值,所以,解得;由題意知時,單調(diào)遞減,所以單調(diào)遞增,即越大越費力,越小越省力;①正確.對于②,由題意知,的取值范圍是,所以②錯誤.對于③,當時,,所以,③錯誤.對于④,當時,,所以,④正確.綜上知,正確結論的序號是①④.故答案為:①④.【點睛】此題考查平面向量數(shù)量積的應用,考查分析問題的能力,屬于中檔題14、【解析】換元,,化簡得到二次函數(shù),根據(jù)二次函數(shù)性質(zhì)得到最值.【詳解】設,,則,,故當,即時,函數(shù)有最大值為.故答案為:.【點睛】本題考查了指數(shù)型函數(shù)的最值,意在考查學生的計算能力,換元是解題的關鍵.15、“,”【解析】直接利用全稱命題的否定是特稱命題寫出結果即可【詳解】因為全稱命題的否定為特稱命題,故命題“,”的否定為:“,”故答案為:“,”三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1),(2)在上遞增,證明見解析(3)【解析】(1)由為1,1上奇函數(shù)可得,再結合可求出m,n的值;(2)直接利用單調(diào)性的定義判斷即可,(3)由題意可得,而,然后分,和三種情況求解的最大值,使其最大值大于等于,解不等式可得結果【小問1詳解】依題意函數(shù)是定義在上的奇函數(shù),所以,∴,所以,經(jīng)檢驗,該函數(shù)為奇函數(shù).【小問2詳解】在上遞增,證明如下:任取,其中,,所以,故在上遞增.【小問3詳解】由于對任意的,總存在,使得成立,所以.當,恒成立當時,在上遞增,,所以.當時,在上遞減,,所以.綜上所述,17、(1)(2)【解析】(1)先求得集合A,再由集合的補集運算和交集運算可求得答案;(2)根據(jù)條件建立不等式組,可求得所求范圍.【小問1詳解】因為,,所以,【小問2詳解】因為,所以解得.故m的取值范圍是18、(1)(2)【解析】(1)由可求出結果;(2)由求出或,根據(jù)方程在內(nèi)有唯一零點,得到,解得結果即可.【小問1詳解】由得,得,得,所以函數(shù)的定義域為,即.【小問2詳解】因為,所以,所以或,因為關于的方程在內(nèi)有唯一零點,且,所以,解得.19、(1)4.5(2)1000【解析】(1)把最大振幅和標準振幅直接代入公式M=lgA-lg求解;(2)利用對數(shù)式和指數(shù)式的互化由M=lgA-lg得A=,把M=8和M=5分別代入公式作比后即可得到答案試題解析:(1)因此,這次地震的震級為里氏4.5級.(2)由可得,即,當時,地震的最大振幅為;當時,地震的最大振幅為;所以,兩次地震的最大振幅之比是:答:8級地震的最大振幅是5級地震的最大振幅的1000倍.考點:函數(shù)模型的選擇與應用20、(1)相交(2)【解析】(1)根據(jù)條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考地理一輪復習第三部分區(qū)域可持續(xù)發(fā)展-重在綜合第三章區(qū)域自然資源的開發(fā)利用第31講流域的綜合開發(fā)學案新人教版
- DB42-T 2353-2024 公路隧道巖溶水文地質(zhì)勘察規(guī)程
- 集體倉庫租賃合同(5篇)
- 二零二五年度餐廳后廚裝修設計與施工合同2篇
- 二零二五年度車輛質(zhì)押車輛保險代理及租賃服務協(xié)議2篇
- 第8課《城鄉(xiāng)改革不斷深入》課件
- 2024年浙江金融職業(yè)學院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 醫(yī)療行業(yè)供需現(xiàn)狀與發(fā)展戰(zhàn)略規(guī)劃
- 2024年陽泉市第二人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年河南檢察職業(yè)學院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 廣東大灣區(qū)2024-2025學年度高一上學期期末統(tǒng)一測試英語試題(無答案)
- 《胃癌靶向治療》課件
- 2024-2025學年遼寧省沈陽市高一上學期1月期末質(zhì)量監(jiān)測數(shù)學試題(含解析)
- 《少兒主持人》課件
- 北京市朝陽區(qū)2024-2025學年高二上學期期末考試生物試卷(含答案)
- 2025年西藏拉薩市柳梧新區(qū)城市投資建設發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 2025年部編版一年級語文上冊期末復習計劃
- 儲罐維護檢修施工方案
- 地理2024-2025學年人教版七年級上冊地理知識點
- 2024 消化內(nèi)科專業(yè) 藥物臨床試驗GCP管理制度操作規(guī)程設計規(guī)范應急預案
- 2024-2030年中國電子郵箱行業(yè)市場運營模式及投資前景預測報告
評論
0/150
提交評論