




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,已知水平放置的按斜二測畫法得到的直觀圖為,若,,則的面積為()A.12 B.C.6 D.32.若a,b都為正實(shí)數(shù)且,則的最大值是()A. B.C. D.3.設(shè),,,則、、的大小關(guān)系是()A. B.C. D.4.一個機(jī)器零件的三視圖如圖所示,其中側(cè)視圖是一個半圓與邊長為的正方形,俯視圖是一個半圓內(nèi)切于邊長為的正方形.若該機(jī)器零件的表面積為,則的值為A.4 B.2C.8 D.65.若,,且,則A. B.C. D.6.已知,,則A. B.C. D.7.下列大小關(guān)系正確的是A. B.C. D.8.若圓錐的底面半徑為2cm,表面積為12πcm2,則其側(cè)面展開后扇形的圓心角等于()A. B.C. D.9.在同一坐標(biāo)系中,函數(shù)與大致圖象是()A. B.C. D.10.與直線垂直,且在軸上的截距為-2的直線方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若,則實(shí)數(shù)的取值范圍為______.12._____13.已知某扇形的弧長為,面積為,則該扇形的圓心角(正角)為_________.14.已知,則____________15.已知函數(shù),,若對任意的,都存在,使得,則實(shí)數(shù)的取值范圍為_________.16.在單位圓中,已知角的終邊與單位圓的交點(diǎn)為,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),,g(x)與f(x)互為反函數(shù).(1)若函數(shù)在區(qū)間內(nèi)有最小值,求實(shí)數(shù)m的取值范圍;(2)若函數(shù)y=h(g(x))在區(qū)間(1,2)內(nèi)有唯一零點(diǎn),求實(shí)數(shù)m的取值范圍.18.如圖所示,在四棱錐P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=a,(1)求證:PD⊥平面ABCD;(2)求證:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值19.已知(1)求的最小正周期;(2)將的圖像上的各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將所得圖像向右平移個單位,得到函數(shù)的圖像,求在上的單調(diào)區(qū)間和最值.20.已知函數(shù).(1)在①,②這兩個條件中任選一個,補(bǔ)充在下面的橫線上,并解答.問題:已知函數(shù)___________,,求的值域.注:如果選擇兩個條件分別解答,按第一個解答計分.(2)若,,,求的取值范圍.21.如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求證:BC⊥AF;(2)求幾何體EF-ABCD的體積
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】由直觀圖,確定原圖形中線段長度和邊關(guān)系后可求得面積【詳解】由直觀圖,知,,,所以三角形面積為故選:C2、D【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因?yàn)?,都為正?shí)數(shù),,所以,當(dāng)且僅當(dāng),即時,取最大值.故選:D3、B【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與、的大小關(guān)系,由此可得出、、的大小關(guān)系.【詳解】,即,,,因此,.故選:B.4、A【解析】幾何體為一個正方體與四分之一個球的組合體,所以表面積為,選A點(diǎn)睛:空間幾何體表面積的求法(1)以三視圖為載體的幾何體的表面積問題,關(guān)鍵是分析三視圖確定幾何體中各元素之間的位置關(guān)系及數(shù)量(2)多面體的表面積是各個面的面積之和;組合體的表面積注意銜接部分的處理(3)旋轉(zhuǎn)體的表面積問題注意其側(cè)面展開圖的應(yīng)用5、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一個根,b是方程的另一個根由韋達(dá)定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=?6,即b=?8,∴2×b=?16=?q,∴q=16∴p+q=21故選:A6、C【解析】由已知可得,故選C考點(diǎn):集合的基本運(yùn)算7、C【解析】根據(jù)題意,由于那么根據(jù)與0,1的大小關(guān)系比較可知結(jié)論為,選C.考點(diǎn):指數(shù)函數(shù)與對數(shù)函數(shù)的值域點(diǎn)評:主要是利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)來比較大小,屬于基礎(chǔ)題8、D【解析】利用扇形面積計算公式、弧長公式及其圓的面積計算公式即可得出【詳解】設(shè)圓錐的底面半徑為r=2,母線長為R,其側(cè)面展開后扇形的圓心角等于θ由題意可得:,解得R=4又2π×2=Rθ∴θ=π故選D【點(diǎn)睛】本題考查了扇形面積計算公式、弧長公式及其圓的面積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題9、B【解析】根據(jù)題意,結(jié)合對數(shù)函數(shù)與指數(shù)函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性知:在上單調(diào)遞增,在上單調(diào)遞增,只有B滿足.故選:B.10、A【解析】先求出直線的斜率,再利用直線的點(diǎn)斜式方程求解.【詳解】由題得所求直線的斜率為,∴所求直線方程為,整理為故選:A【點(diǎn)睛】方法點(diǎn)睛:求直線的方程,常用的方法:待定系數(shù)法,先定式(從直線的五種形式中選擇一種作為直線的方程),后定量(求出直線方程中的待定系數(shù)).二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】令,分析出函數(shù)為上的減函數(shù)且為奇函數(shù),將所求不等式變形為,可得出關(guān)于的不等式,解之即可.【詳解】令,對任意的,,故函數(shù)的定義域?yàn)?,因?yàn)椋瑒t,所以,函數(shù)為奇函數(shù),當(dāng)時,令,由于函數(shù)和在上均為減函數(shù),故函數(shù)在上也為減函數(shù),因?yàn)楹瘮?shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),所以,函數(shù)在上也為減函數(shù),因?yàn)楹瘮?shù)在上連續(xù),則在上為減函數(shù),由可得,即,所以,,即,解得或.故答案為:或.12、【解析】利用根式性質(zhì)與對數(shù)運(yùn)算進(jìn)行化簡.【詳解】,故答案為:613、【解析】根據(jù)給定條件求出扇形所在圓的半徑即可計算作答.【詳解】設(shè)扇形所在圓的半徑為,扇形弧長為,即,由扇形面積得:,解得,所以該扇形的圓心角(正角)為.故答案為:14、##0.8【解析】利用同角三角函數(shù)的基本關(guān)系,將弦化切再代入求值【詳解】解:,則,故答案為:15、##a≤【解析】時,,原問題.【詳解】∵,,∴,∴,即對任意的,都存在,使恒成立,∴有.當(dāng)時,顯然不等式恒成立;當(dāng)時,,解得;當(dāng)時,,此時不成立.綜上,.故答案為:.16、【解析】先由三角函數(shù)定義得,再由正切的兩角差公式計算即可.【詳解】由三角函數(shù)的定義有,而.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)研究情況下的單調(diào)性和值域,根據(jù)對數(shù)復(fù)合函數(shù)的單調(diào)性及其開區(qū)間最值,列不等式求參數(shù)范圍.(2)將問題化為在內(nèi)有唯一零點(diǎn),利用二次函數(shù)的性質(zhì)求參數(shù)范圍即可.【小問1詳解】由題設(shè),,,所以在定義域上遞增,在上遞減,在上遞增,又在內(nèi)有最小值,當(dāng),即時,在上遞減,上遞增,此時的值域?yàn)?,則;所以,可得;當(dāng),即時,在上遞減,上遞增,此時是值域上的一個子區(qū)間,則;所以開區(qū)間上不存在最值.綜上,.【小問2詳解】由,則,要使在(1,2)內(nèi)有唯一零點(diǎn),所以在內(nèi)有唯一零點(diǎn),又開口向上且對稱軸為,所以,可得.18、(1)見解析(2)見解析(3)【解析】(1)證明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)證明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四邊形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC?平面PAC,∴平面PAC⊥平面PBD(3)設(shè)AC∩BD=O,連接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD為二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考點(diǎn):平面與平面垂直的判定.19、(1);(2)答案見解析.【解析】(1)整理函數(shù)的解析式可得,結(jié)合最小正周期公式可得其的最小正周期為;(2)由題意可得,結(jié)合函數(shù)的定義域可得函數(shù)的單調(diào)增區(qū)間為:,單調(diào)減區(qū)間為:,最大值為:,最小值為:.試題解析:(1)
,
所以最小正周期為;(2)由已知有,因?yàn)?所以,當(dāng),即時,g(x)單調(diào)遞增,當(dāng)即時,g(x)單調(diào)遞減,所以g(x)的增區(qū)間為,減區(qū)間為,所以在上最大值為,最小值為.20、(1)答案見解析(2)【解析】(1)根據(jù)復(fù)合函數(shù)的性質(zhì)即可得到的值域;(2)令,求出其最小值,則問題轉(zhuǎn)化為恒成立,進(jìn)而求最小值即可.【小問1詳解】選擇①,,令,則,故函數(shù)的值域?yàn)镽,即的值域?yàn)镽.選擇②,,令,則,因?yàn)楹瘮?shù)單調(diào)遞增,所以,即的值域?yàn)?【小問2詳解】令.當(dāng)時,,,;當(dāng)時,,,.因?yàn)?,所以的最小值?,所以,即.令,則,所以,故,即的取值范圍為.21、(1)詳見解析;(2).【解析】(1)推導(dǎo)出FC⊥CD,F(xiàn)C⊥BC,AC⊥BC,由此BC⊥平面ACF,從而BC⊥AF(2)推導(dǎo)出AC=BC=2,AB4,從而AD=BCsin∠ABC=22,由V幾何體EF﹣ABCD=V幾何體A﹣CDEF+V幾何體F﹣ACB,能求出幾何體EF﹣ABCD的體積【詳解】(1)因?yàn)槠矫鍯DEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四邊形CDEF是正方形,所以FC⊥CD,F(xiàn)C?平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因?yàn)椤鰽CB是腰長為2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因?yàn)椤鰽BC是腰長為2的等腰直角三角形,所以AC=BC=2,AB==4,所以A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 壓機(jī)模具維修合同范例
- 合作供貨結(jié)賬合同范本
- 廠家購車合同范本
- 原料度單合同范本
- 縣城住宅出租合同范本
- 合同范例庫建設(shè)情況
- 廠房建設(shè)合作合同范本
- 公司總監(jiān)合同范本
- 回收名煙行業(yè)分析研究報告
- 衛(wèi)生間隔斷合同范例誰有
- 轟趴館計劃書
- 檢驗(yàn)檢測機(jī)構(gòu)質(zhì)量管理課件
- 2023年上海市16區(qū)數(shù)學(xué)中考二模匯編2 方程與不等式(39題)含詳解
- 中國民航大學(xué)開題報告模板
- 崗位之間工作銜接配合安全與職業(yè)衛(wèi)生事項(xiàng)課件
- 人民幣銀行結(jié)算賬戶管理系統(tǒng)培訓(xùn)課件
- 04S516 混凝土排水管道基礎(chǔ)及接口
- 鋼結(jié)構(gòu)施工安全培訓(xùn)
- 火鍋店消防知識培訓(xùn)課件
- 超市商品結(jié)構(gòu)圖
- 家庭社會工作課件
評論
0/150
提交評論