版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.若是第三象限角,且,則是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.邊長為的正四面體的表面積是A. B.C. D.3.下列函數(shù)中,在其定義域內(nèi)單調(diào)遞減的是()A. B.C. D.4.已知,,且,均為銳角,那么()A. B.或-1C.1 D.5.某工廠生產(chǎn)的30個零件編號為01,02,…,19,30,現(xiàn)利用如下隨機數(shù)表從中抽取5個進行檢測.若從表中第1行第5列的數(shù)字開始,從左往右依次讀取數(shù)字,則抽取的第5個零件編號為()3457078636046896082323457889078442125331253007328632211834297864540732524206443812234356773578905642A. B.C. D.6.已知函數(shù),若方程有8個相異實根,則實數(shù)b的取值范圍為()A. B.C. D.7.已知,那么“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.下面四個不等式中不正確的為A. B.C. D.9.已知是定義在R上的單調(diào)函數(shù),滿足,且,若,則a與b的關系是A. B.C. D.10.設函數(shù)的圖象為,關于點A(2,1)的對稱圖象為,若直線y=b與有且僅有一個公共點,則b的值為A.0 B.-4C.0或4 D.0或-411.用二分法求方程的近似解時,可以取的一個區(qū)間是A. B.C. D.12.函數(shù)的零點所在的區(qū)間()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知,則_____.14.函數(shù)f(x)=log2(x2-1)的單調(diào)遞減區(qū)間為________15.已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對弧長為____16.已知函數(shù)圖像關于對稱,當時,恒成立,則滿足的取值范圍是_____________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x-1.(1)求f(3)+f(-1);(2)求f(x)的解析式.18.已知正方體,分別為和上的點,且,.(1)求證:;(2)求證:三條直線交于一點.19.已知二次函數(shù).(1)若函數(shù)滿足,且.求的解析式;(2)若對任意,不等式恒成立,求的最大值.20.如圖所示,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.21.化簡與計算(1);(2).22.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)圖象的對稱中心的坐標和對稱軸方程
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】根據(jù)是第三象限角,寫出角的集合,進一步得到的集合,再根據(jù)得到答案【詳解】是第三象限角,,則,即是第二象限或者第四象限角,,是第四象限角故選:D2、D【解析】∵邊長為a的正四面體的表面為4個邊長為a正三角形,∴表面積為:4×a=a2,故選D3、B【解析】根據(jù)函數(shù)的單調(diào)性確定正確選項【詳解】在上遞增,不符合題意.在上遞減,符合題意.在上有增有減,不符合題意.故選:B4、A【解析】首先確定角,接著求,,最后根據(jù)展開求值即可.【詳解】因為,均為銳角,所以,所以,,所以.故選:A.【點睛】(1)給值求值問題一般是正用公式將所求“復角”展開,看需要求相關角的哪些三角函數(shù)值,然后根據(jù)角的范圍求出相應角的三角函數(shù)值,代入展開式即可(2)通過求所求角的某種三角函數(shù)值來求角,關鍵點在選取函數(shù),常遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是(0,π),選余弦較好;若角的范圍為,選正弦較好5、C【解析】根據(jù)隨機數(shù)表依次進行選取即可【詳解】解:根據(jù)隨機數(shù)的定義,1行的第5列數(shù)字開始由左向右依次選取兩個數(shù)字,大于30的數(shù)字舍去,重復的舍去,取到數(shù)字依次為07,04,08,23,12,則抽取的第5個零件編號為12.故選:【點睛】本題考查簡單隨機抽樣的應用,同時考查對隨機數(shù)表法的理解和辨析6、B【解析】畫出的圖象,根據(jù)方程有個相異的實根列不等式,由此求得的取值范圍.【詳解】畫出函數(shù)的圖象如圖所示,由題意知,當時,;當時,.令,則原方程化為.∵方程有8個相異實根,∴關于t的方程在上有兩個不等實根.令,,∴,解得.故選:B7、A【解析】化簡得,再利用充分非必要條件定義判斷得解.【詳解】解:.因為“”是“”的充分非必要條件,所以“”是“”的充分非必要條件.故選:A8、B【解析】A,利用三角函數(shù)線比較大??;B,取中間值1和這兩個數(shù)比較;C,利用對數(shù)函數(shù)圖象比較這兩個數(shù)的大??;D,取中間值1和這兩個數(shù)比較【詳解】解:A,如圖,利用三角函數(shù)線可知,所對的弧長為,,∴,A對;B,由于,B錯;C,如圖,,則,C對;D,,D對;故選:B【點睛】本題主要考查比較兩個數(shù)的大小,考查三角函數(shù)線的作用,考查指對數(shù)式的大小,屬于基礎題9、A【解析】由題意,設,則,又由,求得,得t值,確定函數(shù)的解析式,據(jù)此分析可得,即,又由,利用換底公式,求得,結(jié)合對數(shù)的運算性質(zhì)分析可得答案【詳解】根據(jù)題意,是定義在R上的單調(diào)函數(shù),滿足,則為常數(shù),設,則,又由,即,則有,解可得,則,若,即,則,若,必有,則有,又由,則,解可得,即,所以,故選A【點睛】本題主要考查了函數(shù)的單調(diào)性的應用,以及對數(shù)的運算性質(zhì)的應用,其中解答中根據(jù)題意,設,求得實數(shù)的值,確定出函數(shù)的解析式,再利用對數(shù)的運算性質(zhì)求解是解答的關鍵,著重考查了分析問題和解答問題的能力,以及換元思想的應用,屬于中檔試題10、C【解析】先設圖像上任一點以及P關于點的對稱點,根據(jù)點關于點對稱的性質(zhì),用p的坐標表示的坐標,再把的坐標代入f(x)的解析式進行整理,求出圖象的解析式,通過對解析式值域的分析,再結(jié)合直線y=b與有且僅有一個公共點,來確定未知量b的值?!驹斀狻吭O圖像上任一點,且P關于點的對稱點,則有,解得,又點在函數(shù)的圖像上,則有,那么圖像的函數(shù)為,當時,,,當且僅當時取到等號,此時取到最小值4,直線y=b與只有一個公共點,故b=4,同理當時,,,即,此時取到最大值0,當且僅當x=3時取到等號,直線y=b與只有一個公共點,故b=0.綜上,b的值為0或4.故選:C【點睛】利用基本不等式求出函數(shù)最值時,要注意函數(shù)定義域是否包含取等點,本題是一道函數(shù)綜合題11、A【解析】分析:根據(jù)零點存在定理進行判斷詳解:令,因為,,所以可以取的一個區(qū)間是,選A.點睛:零點存在定理的主要內(nèi)容為區(qū)間端點函數(shù)值異號,是判斷零點存在的主要依據(jù).12、B【解析】,,零點定理知,的零點在區(qū)間上所以選項是正確的二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、3【解析】利用誘導公式求出,再將所求值的式子弦化切,代值計算即得.【詳解】因,所以.故答案為:3.14、【解析】由復合函數(shù)同增異減得單調(diào)減區(qū)間為的單調(diào)減區(qū)間,且,解得故函數(shù)的單調(diào)遞減區(qū)間為15、【解析】解直角三角形AOC,求出半徑AO,代入弧長公式求出弧長的值解:如圖:設∠AOB=2,AB=2,過點0作OC⊥AB,C為垂足,并延長OC交于D,則∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,從而弧長為α×r=2×=,故答案為考點:弧長公式16、【解析】由函數(shù)圖像關于對稱,可得函數(shù)是偶函數(shù),由當時,恒成立,可得函數(shù)在上為增函數(shù),從而將轉(zhuǎn)化為,進而可求出取值范圍【詳解】因為函數(shù)圖像關于對稱,所以函數(shù)是偶函數(shù),所以可轉(zhuǎn)化為因為當時,恒成立,所以函數(shù)在上為增函數(shù),所以,解得,所以取值范圍為,故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)6(2)f(x)=【解析】(1)可以直接求,利用為奇函數(shù),求得,所以只需要求出就可以了,再求出;(2)由于已知的解析式,所以只需要求出時的解析式即可,由奇函數(shù)的性質(zhì)求出解析式試題解析:(1)∵f(x)是奇函數(shù),∴f(3)+f(-1)=f(3)-f(1)=23-1-2+1=6.(2)設x<0,則-x>0,∴f(-x)=2-x-1,∵f(x)為奇函數(shù),∴f(x)=-f(-x)=-2-x+1,∴f(x)=18、(1)詳見解析;(2)詳見解析【解析】(1)連結(jié)和,由條件可證得和,從而得到∥.(2)結(jié)合題意可得直線和必相交,根據(jù)線面關系再證明該交點直線上即可得到結(jié)論【詳解】證明:(1)如圖,連結(jié)和,在正方體中,,∵,∴,又,,∴又在正方體中,,,∴,又,∴同理可得,又,∴∴∥.(2)由題意可得(或者和不平行),又由(1)知∥,所以直線和必相交,不妨設,則,又,所以,同理因為,所以,所以、、三條直線交于一點【點睛】(1)證明兩直線平行時,可根據(jù)三種平行間的轉(zhuǎn)化關系進行證明,也可利用線面垂直的性質(zhì)進行證明,解題時要注意合理選擇方法進行求解(2)證明三線共點的方法是:先證明其中的兩條直線相交,再證明該交點在第三條直線上.解題時要依據(jù)空間中的線面關系及三個公理,并結(jié)合圖形進行求解19、(1)(2)【解析】(1)利用待定系數(shù)的方法確定二次函數(shù)解析式(2)由二次不等式恒成立,轉(zhuǎn)化參數(shù)關系,代入通過討論特殊情況后配合基本不等式求出最值【小問1詳解】設,由已知代入,得,對于恒成立,故,解得,又由,得,所以;【小問2詳解】若對任意,不等式恒成立,???????整理得:恒成立,因為a不為0,所以,所以,所以,令,因為,所以,若時,此時,若時,,當時,即時,上式取得等號,???????綜上的最大值為.20、(1)證明見解析;(2)證明見解析.【解析】(1)證明,再由,由平行公理證明,證得四點共面;(2)證明,證得面,再證得,證得面,從而證得平面EFA1∥平面BCHG.【詳解】(1)∵G,H分別是A1B1,A1C1的中點,∴GH是△A1B1C1的中位線,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四點共面(2)∵E,F(xiàn)分別是AB,AC的中點,∴EF∥BC.∵EF?平面BCHG,BC?平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四邊形A1EBG是平行四邊形,∴A1E∥GB.∵A1E?平面BCHG,GB?平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【點睛】本題考查了四點共面的證明,面面平行的判定,考查對基本定理的掌握與應用,空間想象能力,要注意線線平行、線面平行、面面平行之間的相互轉(zhuǎn)化,屬于中檔題.21、(1)(2)5【解析】(1)根據(jù)指數(shù)的運算性質(zhì)計算即可;(2)根據(jù)對數(shù)的運算法則計算即可.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保無害油菜籽訂購合同
- 2024的區(qū)域代理合同范文
- 工廠房屋租賃合同談判技巧
- 基金交易服務協(xié)議書模板
- 城市婚姻登記處離婚協(xié)議樣本
- 機動車維修技術培訓協(xié)議
- 個人承包水利工程協(xié)議
- 貨車租賃協(xié)議書
- 2024廣告公司工程合同范本
- 2024深圳市工程施工合同
- 教科版五年級科學上冊(風的作用) 教學課件
- 二年級下冊語文試題 -“詩詞大會”題庫二 (word版有答案) 人教部編版
- GB/T 7702.20-2008煤質(zhì)顆?;钚蕴吭囼灧椒兹莘e和比表面積的測定
- 新歷史主義文藝思潮
- GB/T 40120-2021農(nóng)業(yè)灌溉設備灌溉用熱塑性可折疊軟管技術規(guī)范和試驗方法
- GB/T 3903.2-1994鞋類通用檢驗方法耐磨試驗方法
- GB/T 10801.2-2018絕熱用擠塑聚苯乙烯泡沫塑料(XPS)
- 12J5-1 平屋面建筑標準設計圖
- 中印邊境爭端
- 《墨梅》課件(省一等獎)
- 招聘與錄用期末考試卷及答案AB卷2套
評論
0/150
提交評論