版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是62.如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π3.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.44.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為()A. B. C. D.5.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.6.在直角坐標系中,設一質點M自P0(1,0)處向上運動一個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處……,如此繼續(xù)運動下去,設Pn(xn,yn),n=1,2,3,……,則x1+x2+……+x2018+x2019的值為()A.1 B.3 C.﹣1 D.20197.如圖所示的工件,其俯視圖是()A. B. C. D.8.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.9.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.10.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.11.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.12.甲車行駛30千米與乙車行駛40千米所用時間相同,已知乙車每小時比甲車多行駛15千米,設甲車的速度為千米/小時,依據(jù)題意列方程正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續(xù)經過2018次變換后,等邊△ABC的頂點C的坐標為_____.14.如圖,邊長為6cm的正三角形內接于⊙O,則陰影部分的面積為(結果保留π)_____.15.27的立方根為.16.在矩形ABCD中,對角線AC、BD相交于點O,∠AOB=60°,AC=6cm,則AB的長是_____.17..如圖,圓錐側面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.18.若實數(shù)a、b、c在數(shù)軸上對應點的位置如圖,則化簡:2|a+c|++3|a﹣b|=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某景區(qū)商店銷售一種紀念品,每件的進貨價為40元.經市場調研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數(shù)量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.20.(6分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設點P的橫坐標為m.PQ與OQ的比值為y,求y與m的數(shù)學關系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當∠PBA+∠CBO=45°時.求△PBA的面積.21.(6分)已知關于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個不相等的實數(shù)根;若方程的兩個實數(shù)根都是整數(shù),求整數(shù)的值.22.(8分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數(shù);(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.23.(8分)某經銷商從市場得知如下信息:A品牌手表B品牌手表進價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進這兩種品牌手表共100塊,設該經銷商購進A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.試寫出y與x之間的函數(shù)關系式;若要求全部銷售完后獲得的利潤不少于1.26萬元,該經銷商有哪幾種進貨方案;選擇哪種進貨方案,該經銷商可獲利最大;最大利潤是多少元.24.(10分)已知,關于x的方程x2+2x-k=0有兩個不相等的實數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個方程的兩個實數(shù)根,求的值;(3)根據(jù)(2)的結果你能得出什么結論?25.(10分)如圖1,點和矩形的邊都在直線上,以點為圓心,以24為半徑作半圓,分別交直線于兩點.已知:,,矩形自右向左在直線上平移,當點到達點時,矩形停止運動.在平移過程中,設矩形對角線與半圓的交點為(點為半圓上遠離點的交點).如圖2,若與半圓相切,求的值;如圖3,當與半圓有兩個交點時,求線段的取值范圍;若線段的長為20,直接寫出此時的值.26.(12分)在平面直角坐標系中,函數(shù)()的圖象經過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數(shù)的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內的整點個數(shù);②若區(qū)域內恰有4個整點,結合函數(shù)圖象,求的取值范圍.27.(12分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)統(tǒng)計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關鍵.2、B【解析】
連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.3、D【解析】
由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側,∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.4、B【解析】
連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),
故選B.【點睛】本題考查翻折變換、坐標與圖形的性質、等邊三角形的判定和性質、銳角三角函數(shù)等知識,解題的關鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.5、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.6、C【解析】
根據(jù)各點橫坐標數(shù)據(jù)得出規(guī)律,進而得出x+x+…+x;經過觀察分析可得每4個數(shù)的和為2,把2019個數(shù)分為505組,即可得到相應結果.【詳解】解:根據(jù)平面坐標系結合各點橫坐標得出:x1、x2、x3、x4、x5、x6、x7、x8的值分別為:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分別為:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故選C.【點睛】此題主要考查規(guī)律型:點的坐標,解題關鍵在于找到其規(guī)律7、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.8、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點:簡單組合體的三視圖.9、B【解析】
設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.10、D【解析】
從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,∴D是該幾何體的主視圖.故選D.【點睛】本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.11、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.12、C【解析】由實際問題抽象出方程(行程問題).【分析】∵甲車的速度為千米/小時,則乙甲車的速度為千米/小時∴甲車行駛30千米的時間為,乙車行駛40千米的時間為,∴根據(jù)甲車行駛30千米與乙車行駛40千米所用時間相同得.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(﹣2016,+1)【解析】
據(jù)軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據(jù)平移的距離求出點A變換后的橫坐標,最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續(xù)2018次這樣的變換得到三角形在x軸上方是解題的關鍵.14、(4π﹣3)cm1【解析】
連接OB、OC,作OH⊥BC于H,根據(jù)圓周角定理可知∠BOC的度數(shù),根據(jù)等邊三角形的性質可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關鍵.15、1【解析】找到立方等于27的數(shù)即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個數(shù)的立方根,用到的知識點為:開方與乘方互為逆運算16、3cm.【解析】
根據(jù)矩形的對角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點睛】本題主要考查矩形的性質和等邊三角形的判定和性質,解本題的關鍵是掌握矩形的對角線相等且互相平分.17、4【解析】
先根據(jù)圓錐的側面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結論.【詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側面展開圖,勾股定理,求出OA的長是解本題的關鍵.18、﹣5a+4b﹣3c.【解析】
直接利用數(shù)軸結合二次根式、絕對值的性質化簡得出答案.【詳解】由數(shù)軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.【點睛】此題主要考查了二次根式以及絕對值的性質,正確化簡是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解析】分析:(1)根據(jù)“當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件”,即可解答;(2)根據(jù)等量關系“利潤=(售價﹣進價)×銷量”列出函數(shù)關系式,根據(jù)二次函數(shù)的性質,即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數(shù)的應用,根據(jù)已知得出二次函數(shù)的最值是中考中考查重點,同學們應重點掌握.20、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解析】
(3)通過一次函數(shù)解析式確定A、B兩點坐標,直接利用待定系數(shù)法求解即可得到b,c的值,令y=4便可得C點坐標.
(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設點P坐標為(m,-m2+m+2),Q點坐標(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關系,再次利用即可求解.
(3)求得P點坐標,利用圖形割補法求解即可.【詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時PB過點(2,4).設直線PB解析式為,y=kx+2.把點(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當x=5時,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過P作PH⊥cy軸于點H.則S四邊形OHPA=(OA+PH)?OH=(2+5)×7=24.S△OAB=OA?OB=×2×2=7.S△BHP=PH?BH=×5×3=35.∴S△PBA=S四邊形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【點睛】本題考查了函數(shù)圖象與坐標軸交點坐標的確定,以及利用待定系數(shù)法求解拋物線解析式常數(shù)的方法,再者考查了利用數(shù)形結合的思想將圖形線段長度的比化為坐標軸上點之間的線段長度比的思維能力.還考查了運用圖形割補法求解坐標系內圖形的面積的方法.21、(1)證明見解析(2)m=1或m=-1【解析】試題分析:(1)由于m≠0,則計算判別式的值得到,從而可判斷方程總有兩個不相等的實數(shù)根;
(2)先利用求根公式得到然后利用有理數(shù)的整除性確定整數(shù)的值.試題解析:(1)證明:∵m≠0,∴方程為一元二次方程,∴此方程總有兩個不相等的實數(shù)根;(2)∵∵方程的兩個實數(shù)根都是整數(shù),且m是整數(shù),∴m=1或m=?1.22、(1)90°;(1)AE1+EB1=AC1,證明見解析.【解析】
(1)根據(jù)題意得到DE是線段BC的垂直平分線,根據(jù)線段垂直平分線的性質得到EB=EC,根據(jù)等腰三角形的性質、三角形內角和定理計算即可;(1)根據(jù)勾股定理解答.【詳解】解:(1)∵點D是BC邊的中點,DE⊥BC,∴DE是線段BC的垂直平分線,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【點睛】本題考查的是線段垂直平分線的性質定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.23、(1)y=140x+6000;(2)三種,答案見解析;(3)選擇方案③進貨時,經銷商可獲利最大,最大利潤是13000元.【解析】
(1)根據(jù)利潤y=(A售價﹣A進價)x+(B售價﹣B進價)×(100﹣x)列式整理即可;(2)全部銷售后利潤不少于1.26萬元得到一元一次不等式組,求出滿足題意的x的正整數(shù)值即可;(3)利用y與x的函數(shù)關系式的增減性來選擇哪種方案獲利最大,并求此時的最大利潤即可.【詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數(shù)關系式為y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴經銷商有以下三種進貨方案:方案A品牌(塊)B品牌(塊)①4852②4951③5050(3)∵140>0,∴y隨x的增大而增大.∴x=50時y取得最大值.又∵140×50+6000=13000,∴選擇方案③進貨時,經銷商可獲利最大,最大利潤是13000元.【點睛】本題考查由實際問題列函數(shù)關系式;一元一次不等式的應用;一次函數(shù)的應用.24、(1)k>-1;(2)2;(3)k>-1時,的值與k無關.【解析】
(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉化為含有兩根之和與兩根之積的形式,再根據(jù)根與系數(shù)的關系代數(shù)求值即可.(3)結合(1)和(2)結論可見,k>-1時,的值為定值2,與k無關.【詳解】(1)∵方程有兩個不等實根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時,的值與k無關.【點睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關系等知識,熟練掌握相關知識點是解答關鍵.25、(1);(2);(3)或【解析】
(1)如圖2,連接OP,則DF與半圓相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求出,則;DF與半圓相切,由(1)知:PD=CD=18,即可求解;(3)設PG=GH=m,則:,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版洗煤廠租賃與品牌授權合作合同3篇
- 二零二五年度吊車租賃合同租賃期限及續(xù)租條件協(xié)議
- 知識產權共享合同協(xié)議
- 北京文化創(chuàng)意產業(yè)園區(qū)項目開發(fā)框架合同
- 二零二五年度個人與個人設備租賃借款協(xié)議2篇
- 漁船改造維修方案
- 中英文借款協(xié)議書
- 濟南簡易家用電梯施工方案
- 申購方案流程
- 物流行業(yè)信息化升級投資合同
- 施工管理中的文檔管理方法與要求
- 婚介公司紅娘管理制度
- 煤礦電氣試驗規(guī)程
- DL∕T 547-2020 電力系統(tǒng)光纖通信運行管理規(guī)程
- 種子輪投資協(xié)議
- 物業(yè)客服培訓課件PPT模板
- 員工工資條模板
- 執(zhí)行依據(jù)主文范文(通用4篇)
- 浙教版七年級數(shù)學下冊全冊課件
- 華為攜手深圳國際會展中心創(chuàng)建世界一流展館
- 2023版思想道德與法治專題2 領悟人生真諦 把握人生方向 第3講 創(chuàng)造有意義的人生
評論
0/150
提交評論