




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
平面向量知識點歸納平面向量知識點歸納平面向量知識點歸納xxx公司平面向量知識點歸納文件編號:文件日期:修訂次數(shù):第1.0次更改批準審核制定方案設計,管理制度平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么(向量可以平移)。如:2.零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長度為一個單位長度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長度相等且方向相同的兩個向量叫相等向量,相等向量有傳遞性;5.平行向量(也叫共線向量):方向相同或相反的非零向量、叫做平行向量,記作:∥,規(guī)定零向量和任何向量平行。提醒:①相等向量一定是共線向量,但共線向量不一定相等;②兩個向量平行與與兩條直線平行是不同的兩個概念:兩個向量平行包含兩個向量共線,但兩條直線平行不包含兩條直線重合;③平行向量無傳遞性?。ㄒ驗橛?;④三點共線共線;6.相反向量:長度相等方向相反的向量叫做相反向量。的相反向量是-。如下列命題:(1)若,則。(2)兩個向量相等的充要條件是它們的起點相同,終點相同。(3)若,則是平行四邊形。(4)若是平行四邊形,則。(5)若,則。(6)若,則。其中正確的是_______(答:(4)(5))二.向量的表示方法:1.幾何表示法:用帶箭頭的有向線段表示,如,注意起點在前,終點在后;2.符號表示法:用一個小寫的英文字母來表示,如,,等;3.坐標表示法:在平面內(nèi)建立直角坐標系,以與軸、軸方向相同的兩個單位向量,為基底,則平面內(nèi)的任一向量可表示為,稱為向量的坐標,=叫做向量的坐標表示。如果向量的起點在原點,那么向量的坐標與向量的終點坐標相同。三.平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實數(shù)、,使a=e1+e2。如(1)若,則______(答:);(2)下列向量組中,能作為平面內(nèi)所有向量基底的是A.B.C.D.(答:B);(3)已知分別是的邊上的中線,且,則可用向量表示為_____(答:);(4)已知中,點在邊上,且,,則的值是___(答:0)四.實數(shù)與向量的積:實數(shù)與向量的積是一個向量,記作,它的長度和方向規(guī)定如下:當>0時,的方向與的方向相同,當<0時,的方向與的方向相反,當=0時,,注意:≠0。五.平面向量的數(shù)量積:1.兩個向量的夾角:對于非零向量,,作,稱為向量,的夾角,當=0時,,同向,當=時,,反向,當=時,,垂直。2.平面向量的數(shù)量積:如果兩個非零向量,,它們的夾角為,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積或點積),記作:,即=。規(guī)定:零向量與任一向量的數(shù)量積是0,注意數(shù)量積是一個實數(shù),不再是一個向量。如(1)已知,與的夾角為,則等于____(答:1);(2)已知,則等于____(答:);(3)已知是兩個非零向量,且,則的夾角為____(答:)3.在上的投影為,它是一個實數(shù),但不一定大于0。如已知,,且,則向量在向量上的投影為______(答:)4.的幾何意義:數(shù)量積等于的模與在上的投影的積。5.向量數(shù)量積的性質(zhì):設兩個非零向量,,其夾角為,則:①;②當,同向時,=,特別地,;當與反向時,=-;③非零向量,夾角的計算公式:;④。如(1)已知,,如果與的夾角為銳角,則的取值范圍是______(答:或且);六.向量的運算:1.幾何運算:①向量加法:利用“平行四邊形法則”進行,但“平行四邊形法則”只適用于不共線的向量,如此之外,向量加法還可利用“三角形法則”:設,那么向量叫做與的和,即;②向量的減法:用“三角形法則”:設,由減向量的終點指向被減向量的終點。注意:此處減向量與被減向量的起點相同。如(1)化簡:①___;②____;③_____(答:①;②;③);(2)若正方形的邊長為1,,則=_____(答:);2.坐標運算:設,則:①向量的加減法運算:,。如(1)已知點,,若,則當=____時,點P在第一、三象限的角平分線上(答:);(2)已知作用在點的三個力,則合力的終點坐標是(答:(9,1))②實數(shù)與向量的積:。③若,則,即一個向量的坐標等于表示這個向量的有向線段的終點坐標減去起點坐標。如設,且,,則C、D的坐標分別是__________(答:);④平面向量數(shù)量積:。如已知向量=(sinx,cosx),=(sinx,sinx),=(-1,0),若x=,求向量、的夾角;⑤向量的模:。如已知均為單位向量,它們的夾角為,那么=_____(答:);⑥兩點間的距離:若,則。七.向量的運算律:1.交換律:,,;2.結(jié)合律:,;3.分配律:,。如下列命題中:①;②;③;④若,則或;⑤若則;⑥;⑦;⑧;⑨。其中正確的是_____(答:①⑥⑨)提醒:(1)向量運算和實數(shù)運算有類似的地方也有區(qū)別:對于一個向量等式,可以移項,兩邊平方、兩邊同乘以一個實數(shù),兩邊同時取模,兩邊同乘以一個向量,但不能兩邊同除以一個向量,即兩邊不能約去一個向量,切記兩向量不能相除(相約);(2)向量的“乘法”不滿足結(jié)合律,即,為什么八.向量平行(共線)的充要條件:=0。如(1)若向量,當=_____時與共線且方向相同(答:2);(2)已知,,,且,則x=______(答:4);(3)設,則k=_____時,A,B,C共線(答:-2或11)九.向量垂直的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 格林童話精讀課件
- 冷鏈物流設施租賃合同
- 陽光小區(qū)幼兒園戶外游樂設施改造施工合同
- 社會責任教育
- 緩解壓力和情緒管理
- 金屬熱處理模擬考試題+答案
- 管理信息系統(tǒng)教案
- 某水利工程混凝土澆筑勞務分包合同
- 工程承包雙方合同管理與執(zhí)行指南
- 市政道路照明工程勞務合同
- 檢驗科標本運送培訓
- 初中作文指導-景物描寫(課件)
- 秋 輕合金 鋁合金相圖及合金相課件
- 6.3.1 平面向量基本定理 課件(共15張PPT)
- 安全安全檢查表分析(SCL)記錄表(設備、設施)
- 城市濕地公園設計導則2017
- 小學巡課記錄表
- 消防管道隱蔽工程驗收報審表(表格記錄)
- 地質(zhì)災害群測群防講義
- 高頻變壓器標準工時對照表
- 232425黃昆固體物理教案
評論
0/150
提交評論