2023屆安徽省肥東縣重點中學中考數(shù)學猜題卷含答案解析_第1頁
2023屆安徽省肥東縣重點中學中考數(shù)學猜題卷含答案解析_第2頁
2023屆安徽省肥東縣重點中學中考數(shù)學猜題卷含答案解析_第3頁
2023屆安徽省肥東縣重點中學中考數(shù)學猜題卷含答案解析_第4頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆安徽省肥東縣重點中學中考數(shù)學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,若△ABC內接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.2.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.33.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(

)A. B. C. D.4.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-105.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.846.已知a﹣b=1,則a3﹣a2b+b2﹣2ab的值為()A.﹣2 B.﹣1 C.1 D.27.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直8.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.9.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π10.若,則3(x-2)2A.﹣6B.6C.18D.3011.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.12.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在邊長為1正方形ABCD中,點P是邊AD上的動點,將△PAB沿直線BP翻折,點A的對應點為點Q,連接BQ、DQ.則當BQ+DQ的值最小時,tan∠ABP=_____.14.-3的倒數(shù)是___________15.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點E.若△A'ED為直角三角形,則AD的長為_____.16.如圖,在同一平面內,將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.17.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標是.18.計算:(+)=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個交點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求直線AB與x軸的交點C的坐標及△AOB的面積;(3)求方程的解集(請直接寫出答案).20.(6分)如圖,在中,,且,,為的中點,于點,連結,.(1)求證:;(2)當為何值時,的值最大?并求此時的值.21.(6分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉,當旋轉到EF與AD重合時停止轉動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當旋轉停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.22.(8分)已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.23.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.24.(10分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數(shù)的表達式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當運動時間t為何值時,△DMN的面積最大,并求出這個最大值.25.(10分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;(2)求一次打開鎖的概率.26.(12分)先化簡,再求值:,其中的值從不等式組的整數(shù)解中選取.27.(12分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發(fā)運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【答案解析】

延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【題目詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【答案點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.2、C【答案解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質k=xy建立方程求k.【題目詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【答案點睛】本題是反比例函數(shù)綜合題,常作為考測試卷中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.3、D【答案解析】

一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結果,其中摸出白球的所有等可能結果共有2種,根據(jù)概率公式即可得出答案.【題目詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【答案點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.4、C【答案解析】

根據(jù)多項式乘以多項式的法則進行計算即可.【題目詳解】x-2x+5故選:C.【答案點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.5、B【答案解析】測試卷解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.6、C【答案解析】

先將前兩項提公因式,然后把a﹣b=1代入,化簡后再與后兩項結合進行分解因式,最后再代入計算.【題目詳解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故選C.【答案點睛】本題考查了因式分解的應用,四項不能整體分解,關鍵是利用所給式子的值,將前兩項先分解化簡后,再與后兩項結合.7、D【答案解析】

根據(jù)菱形,平行四邊形,正方形的性質定理判斷即可.【題目詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【答案點睛】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.8、C【答案解析】

連接D為弧AB的中點,根據(jù)弧,弦的關系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質可得:即根據(jù)等腰三角形的性質可得:設則即可求出的值.【題目詳解】如圖:連接D為弧AB的中點,根據(jù)弧,弦的關系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質可得:設則故選C.【答案點睛】考查弧,弦之間的關系,全等三角形的判定與性質,等腰三角形的性質,銳角三角函數(shù)等,綜合性比較強,關鍵是構造全等三角形.9、B【答案解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【題目詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【答案點睛】考查了切線的判定和性質;能夠通過作輔助線將所求的角轉移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.10、B【答案解析】測試卷分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.11、D【答案解析】根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應,故D正確.故選D.12、A【答案解析】

連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【題目詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【答案點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣1【答案解析】

連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據(jù)三角函數(shù)的定義即可得到結論.【題目詳解】如圖:連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.【答案點睛】本題考查了翻折變換(折疊問題),正方形的性質,軸對稱﹣最短路線問題,正確的理解題意是解題的關鍵.14、【答案解析】

乘積為1的兩數(shù)互為相反數(shù),即a的倒數(shù)即為,符號一致【題目詳解】∵-3的倒數(shù)是∴答案是15、3﹣或1【答案解析】

分兩種情況:情況一:如圖一所示,當∠A'DE=90°時;情況二:如圖二所示,當∠A'ED=90°時.【題目詳解】解:如圖,當∠A'DE=90°時,△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當∠A'ED=90°時,△A'ED為直角三角形,此時∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【答案點睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質等知識,添加輔助線,構造直角三角形,學會運用分類討論是解題的關鍵.16、60°【答案解析】

先根據(jù)多邊形的內角和公式求出正六邊形每個內角的度數(shù),然后用正六邊形內角的度數(shù)減去正三角形內角的度數(shù)即可.【題目詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【答案點睛】題考查了多邊形的內角和公式,熟記多邊形的內角和公式為(n-2)×180°是解答本題的關鍵.17、(﹣b,a)【答案解析】解:如圖,從A、A1向x軸作垂線,設A1的坐標為(x,y),設∠AOX=α,∠A1OD=β,A1坐標(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標為(﹣b,a).【點評】重點理解三角函數(shù)的定義和求解方法,主要應用公式sinα=cosβ,cosα=sinβ.18、1.【答案解析】

去括號后得到答案.【題目詳解】原式=×+×=2+1=1,故答案為1.【答案點睛】本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【答案解析】測試卷分析:(1)將B坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;將A坐標代入反比例解析式求出n的值,確定出A的坐標,將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;(2)對于直線AB,令y=0求出x的值,即可確定出C坐標,三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;(3)由兩函數(shù)交點A與B的橫坐標,利用圖象即可求出所求不等式的解集.測試卷解析:(1)∵B(2,﹣4)在y=上,∴m=﹣1.∴反比例函數(shù)的解析式為y=﹣.∵點A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b經(jīng)過A(﹣4,2),B(2,﹣4),∴,解之得.∴一次函數(shù)的解析式為y=﹣x﹣2.(2)∵C是直線AB與x軸的交點,∴當y=0時,x=﹣2.∴點C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.(3)不等式的解集為:﹣4<x<0或x>2.20、(1)見解析;(2)時,的值最大,【答案解析】

(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點是的中點,得出,,則有,可得出,得出,即可得出結論;(2)設BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質得出當x=1,即BE=1時,CE2-CF2有最大值,,由三角函數(shù)定義即可得出結果.【題目詳解】解:(1)證明:如圖,延長交的延長線于點,∵為的中點,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點是的中點,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設,則,∵,∴,在中,,在中,,∵,∴,∴,∴當,即時,的值最大,∴.在中,【答案點睛】本題考查了平行四邊形的性質、全等三角形的判定與性質、等腰直角三角形的判定與性質、勾股定理、等腰三角形的判定與性質等知識;證明三角形全等和等腰三角形是解題的關鍵.21、(1)詳見解析;(1)①詳見解析;②1;③.【答案解析】

(1)只要證明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;②構建二次函數(shù),利用二次函數(shù)的性質即可解決問題;③如圖3中,作EH⊥BG于H.設NG=m,則BG=1m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問題.【題目詳解】(1)證明:如圖1中,∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中點,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如圖1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,設BM=CN=x,則BN=4-x,∴S△BMN=?x(4-x)=-(x-1)1+1,∵-<0,∴x=1時,△BMN的面積最大,最大值為1.③解:如圖3中,作EH⊥BG于H.設NG=m,則BG=1m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S△BEG=?EG?BN=?BG?EH,∴EH==m,在Rt△EBH中,sin∠EBH=.【答案點睛】本題考查四邊形綜合題、矩形的性質、等腰直角三角形的判定和性質、全等三角形的判定和性質、旋轉變換、銳角三角函數(shù)等知識,解題的關鍵是準確尋找全等三角形解決問題,學會添加常用輔助線,學會利用參數(shù)解決問題,22、(1)拋物線解析式為y=﹣x2+2x+6;(2)當t=3時,△PAB的面積有最大值;(3)點P(4,6).【答案解析】

(1)利用待定系數(shù)法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關于t的函數(shù)表達式,利用二次函數(shù)的性質求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【題目詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,

則PE=PD,

點P(m,-m2+2m+6),

函數(shù)的對稱軸為:x=2,則點E的橫坐標為:4-m,

則PE=|2m-4|,

即-m2+2m+6+m-6=|2m-4|,

解得:m=4或-2或5+或5-(舍去-2和5+)

故點P的坐標為:(4,6)或(5-,3-5).【答案點睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質等,熟練掌握和靈活運用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質、等腰直角三角形的判定與性質等是解題的關鍵.23、(30+30)米.【答案解析】

解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米24、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當t=時,S△MDN的最大值為.【答案解析】

(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結果;

(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設直線AD的解析式為y=-x+b,即可得到結論;

(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當或時,△PBC∽△ABD,解方程組得D(4,?5),求得設P的坐標為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);

②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結果.【題目詳解】(1)由題意知:解得∴二次函數(shù)的表達式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要當:或時,△PBC∽△ABD,解得D(4,?5),∴設P的坐標為(x,0),即或解得或x=?4.5,∴或P(?4.5,0),②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∴sin∠BAF∴∴∵又∵∴∴當時,的最大值為【答案點睛】屬于二次函數(shù)的綜合題,考查待定系數(shù)法求二次函數(shù)解析式,銳角三角形函數(shù),相似三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論