山東省棗莊市滕州市第一中學(xué)2022年數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第1頁
山東省棗莊市滕州市第一中學(xué)2022年數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第2頁
山東省棗莊市滕州市第一中學(xué)2022年數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第3頁
山東省棗莊市滕州市第一中學(xué)2022年數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第4頁
山東省棗莊市滕州市第一中學(xué)2022年數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.2.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.3.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.64.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位5.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④6.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.637.某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種8.從集合中隨機(jī)選取一個數(shù)記為,從集合中隨機(jī)選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.9.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.10.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.11.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或812.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.14.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.已知函數(shù),則不等式的解集為____________.16.已知,,其中,為正的常數(shù),且,則的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.18.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.19.(12分)已知動圓過定點(diǎn),且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點(diǎn),過分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值.20.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.21.(12分)已知函數(shù)的最小正周期是,且當(dāng)時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).22.(10分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,,若,求PH與平面PBC所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,得到程序框圖的計算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.2、D【解析】

以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、B【解析】

設(shè),,利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來解決.4、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D5、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)椋云矫?,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.6、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點(diǎn):程序框圖.7、B【解析】

分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.8、A【解析】

設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.9、C【解析】

利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.10、C【解析】

根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)?,所以的最小值?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.11、B【解析】

根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點(diǎn)睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題12、B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時,最小值為,故選B.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將代入求解即可;當(dāng)為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.14、【解析】

先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.15、【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計算能力,是一道中檔題.16、【解析】

把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點(diǎn)睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理化簡已知條件,由此求得的值,進(jìn)而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達(dá)式,進(jìn)而求得的取值范圍.【詳解】(1)由題設(shè)知,,即,所以,即,又所以.(2)由題設(shè)知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點(diǎn)睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.18、(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時,等價于,該不等式恒成立,當(dāng)時,等價于,該不等式解集為,當(dāng)時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因?yàn)?,,,所以,,,所以,?dāng)且僅當(dāng)時等號成立.【點(diǎn)睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19、(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點(diǎn),且與直線相切,∴動圓圓心到定點(diǎn)和定直線的距離相等,∴動圓圓心的軌跡是以為焦點(diǎn)的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時取等號,∴四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動點(diǎn)軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計算,考查運(yùn)算求解能力,屬于中檔題.20、(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論