




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Unit4:TrigonometricFunctions
Lesson1:TheGraphsofsin,cosandtanUnit4:TrigonometricFunctionTrigonometryIngrade10youwereintroducedtotrigonometrybyapplyingittorighttrianglesIngrade11youusedtrigonometrytosolveobliquetriangles(triangleswithoutarightangle)Thisrequiredyoutousesin,cosandtanforanglesgreaterthan90?Next,youcreatedgraphsofsinandcosKnownastrigonometricfunctionsIngrade12,wewillcreategraphsofsin,cosandtanforanglesbetween0and2πWenowlookatthetrigonometricfunctionsinradiansTrigonometryIngrade10youwGraphsofsinandcosThegraphsoff(x)=sinxandf(x)=cosxwhenxisindegreesare:Orifweextendthembeyond0and360:GraphsofsinandcosThegraphTerminologyThefunctionsf(x)=sinxandf(x)=cosxareperiodicTheyhavearepeatingpatternTheperiodisthehorizontallengthoftherepeatingpatternTheaxisofcurveisequationofthehorizontallinethatcutsthegraphinhalfTheamplitudeisverticaldistancefromtheaxisofcurvetothemaximum(orminimum)pointBecauseitisadistance,theamplitudeisalwayspositiveTerminologyThefunctionsf(x)PropertiesoftheGraphofsinOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360?Theliney=01-11PropertiesoftheGraphofsinPropertiesoftheGraphofcosOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360?Theliney=01-11PropertiesoftheGraphofcosExample1UseyourTI-83or“Graph”tocreateagraphoff(x)=sinxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample1UseyourTI-83or“GrExample1:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example1:SolutionOneperiodAExample1:NotesThegraphoff(x)=sinxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360?forxindegrees2πforxinradiansThismakessensebecausetheonlythingthatchangedwastheunitsforxandtheperioddependsonx360?Example1:NotesThegraphoffExample2UseyourTI-83or“Graph”tocreateagraphoff(x)=cosxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample2UseyourTI-83or“GrExample2:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example2:SolutionOneperiodAExample2:NotesThegraphoff(x)=cosxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360?forxindegrees2πforxinradiansThisisexactlywhatwesawforf(x)=sinx360?Example2:NotesThegraphoffExample3UseyourTI-83or“Graph”tocreateagraphoff(x)=tanxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample3UseyourTI-83or“GrExample3:SolutionOneperiodAxisofcurvePeriod:Axisofcurve:Maximum:Minimum:Amplitude:πTheliney=0nonenonenoneThegraphoftanhasverticalasymptotes!Example3:SolutionOneperiodAExample3:NotesAlthoughitisperiodic(period=π),thegraphoff(x)=tanxlooksnothinglikef(x)=sinxorf(x)=cosxf(x)=tanxhasnoamplitudebecauseithasnomaximumorminimumvaluesf(x)=tanxhasasymptotesatoddmultiplesofi.e.Example3:NotesAlthoughitisWhyf(x)=tanxHasAsymptotesUsingthequotientidentity,wecanseethatf(x)=tanxisarationalfunction:So,f(x)=tanxwillhaveasymptoteswherevercosx=0Becausecosx=0when f(x)=tanxhasasymptoteswhenWhyf(x)=tanxHasAsymptoteExample4(a)Onthesameaxis,graph f(x)=sin(x) f(x)=sin(x)+2 f(x)=sin(x)–3Makesurexisinradians(b)DescribewhatishappeningExample4(a)Onthesameaxis,Example4:SolutionThegraphoff(x)=sinxismovingupanddownExample4:SolutionThegraphoExample4:NotesByaddingavaluec,tof(x)=sinx,wemovethefunction…Upwhenc>0Downwhenc<0ThisisknownasaverticaltranslationThevalueofcisaddedtothey-coordinateofeverypointonthegraphoff(x)=sinx
Changestheaxisofcurvetotheliney=cExample4:NotesByaddingavaExample5(a)Onthesameaxis,graph f(x)=sin(x) f(x)=2sin(x) f(x)=0.5sin(x) f(x)=-3sin(x)Makesurexisinradians(b)DescribewhatishappeningExample5(a)Onthesameaxis,Example5:SolutionThegraphoff(x)=sinxisbeingstretchedandcompressed.Thegraphoff(x)=sinxis“flipped”overthex-axisandstretchedExample5:SolutionThegraphoExample5:NotesBymultiplyingf(x)=sinxbyavalueawe…Stretchthefunctionwhena>1Compressthefunctionwhen0<a<1ThisisknownasaverticaldilationWealsoreflectthefunctionoverthex-axiswhena<0ThisisknownasaverticalreflectionInbothcases,They-coordinateofeverypointonthegraphoff(x)=sinx
ismultipliedbyaTheamplitudeischangedto|a|Means“absolutevalue”andyouignorethenegativeExample5:NotesBymultiplyingExample6(a)Onthesameaxis,graph
Makesurexisinradians(b)DescribewhatishappeningExample6(a)Onthesameaxis,Example6:SolutionThegraphoff(x)=sinxismovingrightandleftExample6:SolutionThegraphoExample6:NotesBysubtractingavaluedintheargumentoff(x)=sinx,wemovethefunction…Leftwhend<0Rightwhend>0ThisisknownasahorizontaltranslationThevalueofdisaddedtothex-coordinateofeverypointonthegraphoff(x)=sinx
Dealingwithhorizontaltranslationsiscounter-intuitiveWhend<0thefunctionlookslike:f(x)=sin(x+d)andwemoveitleftWhend>0thefunctionlookslike:f(x)=sin(x–d)andwemoveitrightCommonlyreferredtoasaphaseshiftExample6:NotesBysubtractingExample7(a)Onthesameaxis,graph
Makesurexisinradians(b)DescribewhatishappeningExample7(a)Onthesameaxis,Example7:SolutionThegraphoff(x)=sinxisbeingstretchedorcompressedhorizontallyExample7:SolutionThegraphoExample7:NotesBymultiplyingtheargumentoff(x)=sinxbyavaluekwe…Compressthefunctionhorizontallywhenk>1Stretchthefunctionhorizontallywhen0<k<1ThisisknownasahorizontaldilationThex-coordinateofeverypointonthegraphoff(x)=sinx
ismultipliedby1/kTheperiodischangedfrom2πto:i.e.ifk=2,thetransformedfunctionwillhavetwoperiodsin2πExample7:NotesBymultiplyingSummary,Part1Thegraphsofsin,cosandtanhavethefollowingproperties:f(x)=sinxf(x)=cosxf(x)=tanxPeriod2π2ππMaxValue11N/AMinValue-1-1N/AAmplitude11N/AAxisofcurveY=0Y=0Y=0Asymptotesn/an/aGraphSummary,Part1ThegraphsofsSummary,Part2Wecantransformthegraphsoff(x)=sinxandf(x)=cosxinthefollowingways:Verticaltranslationf(x)=sin(x)+corf(x)=cos(x)+cMovetheaxisofcurvetoy=cHorizontaltranslationf(x)=sin(x–d)orf(x)=cos(x–d)AphaseshiftofdVerticalDilationf(x)=asin(x)orf(x)=acos(x)Changeamplitudeto|a|(nonegatives!)HorizontalDilationf(x)=sin(kx)orf(x)=cos(kx)ChangetheperiodtoSummary,Part2WecantransforPracticeProblemsP.258-260#1-11,15,19(notf)Note:Anygraphs/sketchescanbedoneusingyourTI-83ortheprogram“Graph”PracticeProblemsP.258-260#1Unit4:TrigonometricFunctions
Lesson1:TheGraphsofsin,cosandtanUnit4:TrigonometricFunctionTrigonometryIngrade10youwereintroducedtotrigonometrybyapplyingittorighttrianglesIngrade11youusedtrigonometrytosolveobliquetriangles(triangleswithoutarightangle)Thisrequiredyoutousesin,cosandtanforanglesgreaterthan90?Next,youcreatedgraphsofsinandcosKnownastrigonometricfunctionsIngrade12,wewillcreategraphsofsin,cosandtanforanglesbetween0and2πWenowlookatthetrigonometricfunctionsinradiansTrigonometryIngrade10youwGraphsofsinandcosThegraphsoff(x)=sinxandf(x)=cosxwhenxisindegreesare:Orifweextendthembeyond0and360:GraphsofsinandcosThegraphTerminologyThefunctionsf(x)=sinxandf(x)=cosxareperiodicTheyhavearepeatingpatternTheperiodisthehorizontallengthoftherepeatingpatternTheaxisofcurveisequationofthehorizontallinethatcutsthegraphinhalfTheamplitudeisverticaldistancefromtheaxisofcurvetothemaximum(orminimum)pointBecauseitisadistance,theamplitudeisalwayspositiveTerminologyThefunctionsf(x)PropertiesoftheGraphofsinOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360?Theliney=01-11PropertiesoftheGraphofsinPropertiesoftheGraphofcosOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:360?Theliney=01-11PropertiesoftheGraphofcosExample1UseyourTI-83or“Graph”tocreateagraphoff(x)=sinxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample1UseyourTI-83or“GrExample1:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example1:SolutionOneperiodAExample1:NotesThegraphoff(x)=sinxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360?forxindegrees2πforxinradiansThismakessensebecausetheonlythingthatchangedwastheunitsforxandtheperioddependsonx360?Example1:NotesThegraphoffExample2UseyourTI-83or“Graph”tocreateagraphoff(x)=cosxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample2UseyourTI-83or“GrExample2:SolutionOneperiodAxisofcurveAmplitudeMaximumMinimumPeriod:Axisofcurve:Maximum:Minimum:Amplitude:2πTheliney=01-11Example2:SolutionOneperiodAExample2:NotesThegraphoff(x)=cosxhasthesameshapeandpropertieswhenxisinradiansasitdoeswhenxisindegrees:Theonlydifferenceistheperiod360?forxindegrees2πforxinradiansThisisexactlywhatwesawforf(x)=sinx360?Example2:NotesThegraphoffExample3UseyourTI-83or“Graph”tocreateagraphoff(x)=tanxwherexisinradiansFromthegraph,determineTheperiodTheaxisofcurveThemaximumandminimumvaluesTheamplitudeExample3UseyourTI-83or“GrExample3:SolutionOneperiodAxisofcurvePeriod:Axisofcurve:Maximum:Minimum:Amplitude:πTheliney=0nonenonenoneThegraphoftanhasverticalasymptotes!Example3:SolutionOneperiodAExample3:NotesAlthoughitisperiodic(period=π),thegraphoff(x)=tanxlooksnothinglikef(x)=sinxorf(x)=cosxf(x)=tanxhasnoamplitudebecauseithasnomaximumorminimumvaluesf(x)=tanxhasasymptotesatoddmultiplesofi.e.Example3:NotesAlthoughitisWhyf(x)=tanxHasAsymptotesUsingthequotientidentity,wecanseethatf(x)=tanxisarationalfunction:So,f(x)=tanxwillhaveasymptoteswherevercosx=0Becausecosx=0when f(x)=tanxhasasymptoteswhenWhyf(x)=tanxHasAsymptoteExample4(a)Onthesameaxis,graph f(x)=sin(x) f(x)=sin(x)+2 f(x)=sin(x)–3Makesurexisinradians(b)DescribewhatishappeningExample4(a)Onthesameaxis,Example4:SolutionThegraphoff(x)=sinxismovingupanddownExample4:SolutionThegraphoExample4:NotesByaddingavaluec,tof(x)=sinx,wemovethefunction…Upwhenc>0Downwhenc<0ThisisknownasaverticaltranslationThevalueofcisaddedtothey-coordinateofeverypointonthegraphoff(x)=sinx
Changestheaxisofcurvetotheliney=cExample4:NotesByaddingavaExample5(a)Onthesameaxis,graph f(x)=sin(x) f(x)=2sin(x) f(x)=0.5sin(x) f(x)=-3sin(x)Makesurexisinradians(b)DescribewhatishappeningExample5(a)Onthesameaxis,Example5:SolutionThegraphoff(x)=sinxisbeingstretchedandcompressed.Thegraphoff(x)=sinxis“flipped”overthex-axisandstretchedExample5:SolutionThegraphoExample5:NotesBymultiplyingf(x)=sinxbyavalueawe…Stretchthefunctionwhena>1Compressthefunctionwhen0<a<1ThisisknownasaverticaldilationWealsoreflectthefunctionoverthex-axiswhena<0ThisisknownasaverticalreflectionInbothcases,They-coordinateofeverypointonthegraphoff(x)=sinx
ismultipliedbyaTheamplitudeischangedto|a|Means“absolutevalue”andyouignorethenegativeExample5:NotesBymultiplyingExample6(a)Onthesameaxis,graph
Makesurexisinradians(b)DescribewhatishappeningExample6(a)Onthesameaxis,Example6:SolutionThegraphoff(x)=sinxismovingrightandleftExample6:SolutionThegraphoExample6:NotesBysubtractingavaluedintheargumentoff(x)=sinx,wemovethefunction…Leftwhend<0Rightwhend>0ThisisknownasahorizontaltranslationThevalueofdisaddedtothex-coordinateofeverypointonthegraphoff(x)=sinx
Dealingwithhorizontaltranslationsiscounter-intuitiveWhend<0thefunctionlookslike:f(x)=sin(x+d)andwemoveitleftWhend>0thefunctionlookslike:f(x)=sin(x–d)andwemoveitrightCommonlyreferredtoasaphaseshiftExample6:NotesBysubtractingExample7(a)Onthesameaxis,graph
Make
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同合同終止協(xié)議
- 合同續(xù)訂協(xié)議范本
- 三方協(xié)議是不是就是合同
- 贈(zèng)與合同協(xié)議字體大小
- 合作生產(chǎn)協(xié)議合同
- 教牛肉面學(xué)員合同協(xié)議
- 合同中斷協(xié)議范例
- 種子協(xié)議合同
- 賽馬運(yùn)動(dòng)員安全協(xié)議合同
- 超市酒水代銷合同協(xié)議書
- 八年級(jí)英語(yǔ)下學(xué)期期中模擬卷(宿遷專用)(原卷版)
- 藥物過(guò)敏搶救流程
- 深基坑工程施工中的自動(dòng)化設(shè)備應(yīng)用
- 口腔保健科普講座(幼兒園)課件
- 2024-2025學(xué)年全國(guó)版圖知識(shí)競(jìng)賽考試題庫(kù)資料(含答案)
- 小學(xué)生講衛(wèi)生主題班會(huì)
- 2025《個(gè)人信息保護(hù)合規(guī)審計(jì)管理辦法》及指引解讀課件
- 【基礎(chǔ)卷】同步分層練習(xí):四年級(jí)下冊(cè)語(yǔ)文第26課《寶葫蘆的秘密》(含答案)
- 《新生兒復(fù)蘇》課件
- 《教育系統(tǒng)重大事故隱患判定指南》知識(shí)培訓(xùn) (一)
- 中小學(xué)班主任基本功素質(zhì)大賽情景答辯題(附參考答案)
評(píng)論
0/150
提交評(píng)論