![物流系統(tǒng)設計的選址模型介紹(英文版)課件_第1頁](http://file4.renrendoc.com/view/2c2e9928ade722c75e2347380b0e8cbb/2c2e9928ade722c75e2347380b0e8cbb1.gif)
![物流系統(tǒng)設計的選址模型介紹(英文版)課件_第2頁](http://file4.renrendoc.com/view/2c2e9928ade722c75e2347380b0e8cbb/2c2e9928ade722c75e2347380b0e8cbb2.gif)
![物流系統(tǒng)設計的選址模型介紹(英文版)課件_第3頁](http://file4.renrendoc.com/view/2c2e9928ade722c75e2347380b0e8cbb/2c2e9928ade722c75e2347380b0e8cbb3.gif)
![物流系統(tǒng)設計的選址模型介紹(英文版)課件_第4頁](http://file4.renrendoc.com/view/2c2e9928ade722c75e2347380b0e8cbb/2c2e9928ade722c75e2347380b0e8cbb4.gif)
![物流系統(tǒng)設計的選址模型介紹(英文版)課件_第5頁](http://file4.renrendoc.com/view/2c2e9928ade722c75e2347380b0e8cbb/2c2e9928ade722c75e2347380b0e8cbb5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Facilitylocationmodelsfordistributionsystemdesign物流系統(tǒng)設計的選址模型Facilitylocationmodelsford1IntroductionTypesofmodelsGeneralmethodsIntroduction2
Thedesignofthedistributionsystemisastrategicissueforalmosteverycompany.Theproblemoflocatingfacilitiesandallocatingcustomerscoversthecoretopicsofdistributionsystemdesign.
IntroductionThedesignofthedistrib3
Industrialfirmsmustlocatefabrication(制造廠)andassemblyplants(組裝廠)aswellaswarehouses(倉庫).Storeshavetobelocatedbyretailoutlets(零售網(wǎng)點).Theabilitytomanufactureandmarketitsproductsisdependentinpartonthelocationofthefacilities.Similarly,governmentagencieshavetodecideaboutthelocationofoffices,schools,hospitals,firestations,etc.Ineverycase,thequalityoftheservicesdependsonthelocationofthefacilitiesinrelationtootherfacilities.Industrialfirmsmustloc4Typesofmodels
Theproblemoflocatingfacilitiesisnotnewtotheoperationsresearchcommunity(運籌學);thechallengeofwheretobestsitefacilitieshasinspiredarich,colorfulandevergrowingbodyofliterature.Tocopewiththemultitudeofapplications(眾多應用)encounteredinthebusinessworldandinthepublicsector,aneverexpandingfamilyofmodelshasemerged.TypesofmodelsTheprob5Facilitylocationmodelscanbebroadlyclassifiedasfollows:
Theshapeortopographyofthesetofpotentialplantsyieldsmodelsintheplane,networklocationmodels(網(wǎng)絡選址模型),anddiscretelocation(離散選址)ormixed-integerprogrammingmodels(混合正數(shù)規(guī)劃模型),respectively.Facilitylocationmodelscanb6Objectives(目標函數(shù))maybeeitheroftheminsumortheminmaxtype.Minsummodelsaredesignedtominimizeaveragedistanceswhileminmaxmodelshavetominimizemaximumdistances.Predominantly(此外),minsummodelsembracelocationproblemsofprivatecompanieswhileminmaxmodelsfocusonlocationproblemsarisinginthepublicsector.Objectives(目標函數(shù))maybeeither7Modelswithoutcapacityconstraintsdonotrestrict(限制)demandallocation.Ifcapacityconstraintsforthepotentialsiteshavetobeobeyeddemandhastobeallocatedcarefully.Inthelattercasewehavetoexaminewhethersingle-sourcing(單來源)ormultiple-sourcing(多來源)isessential.Modelswithoutcapacityconstr8Single-stagemodels(單階段模型)focusondistributionsystemscoveringonlyonestageexplicitly.Inmulti-stagemodels(多階段模型)theflowofgoodscomprisingseveralhierarchical(層次)stageshastobeexamined.Single-stagemodels(單階段模型)foc9Single-productmodels(單產(chǎn)品模型)arecharacterizedbythefactthatdemand,costandcapacityforseveralproductscanbeaggregatedtoasinglehomogeneousproduct.Ifproductsareinhomogeneoustheireffectonthedesignofthedistributionsystemhastobeanalyzed,viz.multi-productmodels(多產(chǎn)品模型)havetobestudied.Single-productmodels(單產(chǎn)品模型)a10Locationmodelsbaseontheassumptionthatdemandisinelastic(無彈性的),thatis,demandisindependentofspatialdecisions.Ifdemandiselastic(彈性的)therelationshipbetween,e.g.,distanceanddemandhastobetakenintoaccountexplicitly.Inthelattercasecostminimization(成本最小)hastobereplacedthrough,forexample,revenuemaximization(收益最大).物流系統(tǒng)設計的選址模型介紹(英文版)課件11Staticmodels(靜態(tài)模型)trytooptimizesystemperformance(性能)foronerepresentative(代表)period.Bycontrastdynamicmodels(動態(tài)模型)reflectdata(cost,demand,capacities,etc.)varyingovertimewithinagivenplanninghorizon.Staticmodels(靜態(tài)模型)trytoopt12Inpracticemodel(實踐模型)inputisusuallynotknownwithcertainty.Dataarebasedonforecastsand,hence,arelikelytobeuncertain.Asaconsequence,wehaveeitherdeterministicmodels(確定模型)ifinputis(assumedtobe)knownwithcertaintyorprobabilisticmodels(概率模型)ifinputissubjecttouncertainty.Inpracticemodel(實踐模型)input13Inclassicalmodelsthequalityofdemandallocationismeasuredonisolationforeachpairofsupplyanddemandpoints.Unfortunately,ifdemandissatisfiedthroughdeliverytours(運輸,投遞)then,forinstance,deliverycostcannotbecalculatedforeachpairofsupplyanddemandpointsseparately.Combinedlocation/routingmodels(選址/路線模型)elaborateonthisinterrelationship.Inclassicalmodelsthequalit14GeneralmethodsAHP(AnalyticHierarchyProcess)層次分析法FuzzyClustering模糊聚類法Cross-medianmethod交叉中值法gravitymethod重心法P-medianmethodP-中值法Systemicarithmetic系統(tǒng)模擬法Geneticalgorithm(GA)遺傳算法Theshortestpathmethod最短路徑法SimulatedAnnealing(SA)模擬退火算法GeneralmethodsAHP(AnalyticH15TheAnalyticHierarchyProcess(AHP)isastructuredtechniquefordealingwithcomplexdeciision.Ratherthanprescribinga"correct"decision,theAHPhelpsthedecisionmakersfindonethatbestsuitstheirgoalandtheirunderstandingoftheproblem.Basedonmathematicsandpsychology,theAHPwasdevelopedbyThomasL.Saatyinthe1970sandhasbeenextensivelystudiedandrefinedsincethen.Itprovidesacomprehensive(全面)andrationalframework(合理的框架)forstructuringadecisionproblem(結(jié)構(gòu)化決策問題),forrepresentingandquantifyingitselements,forrelatingthoseelementstooverallgoals,andforevaluatingalternativesolutions.Itisusedaroundtheworldinawidevarietyofdecisionsituations,infieldssuchasgovernment,business,industry,healthcare,andeducation.AHPTheAnalyticHierarchyProcess16FuzzyClusteringFuzzyclusteringisaclassofalgorithmsforclusteranalysisinwhichtheallocationofdatapointstoclustersisnot"hard"(all-or-nothing)but"fuzzy"inthesamesenseasfuzzylogic.Inhardclustering,dataisdividedintodistinctclusters,whereeachdataelementbelongstoexactlyonecluster.Infuzzyclustering(alsoreferredtoassoftclustering),dataelementscanbelongtomorethanonecluster,andassociatedwitheachelementisasetofmembershiplevels(隸屬關系).Theseindicatethestrengthoftheassociationbetweenthatdataelementandaparticularcluster.Fuzzyclusteringisaprocessofassigningthesemembershiplevels,andthenusingthemtoassigndataelementstooneormoreclusters.FuzzyClusteringFuzzyclusteri17gravitymethod總運費=設施與客戶之間的直線距離(歐幾里德距離)×需求量
對上式分別對x,y求偏微分,可以求出下面的一對隱含有最優(yōu)解的等式,應用這兩個等式通過迭代的方法分別對x,y進行求解,即可得最優(yōu)解。gravitymethod總運費=設施與客戶之間的直線距離18Cross-medianmethod總費用=設施到需求點的折線距離(城市距離)×需求量上述目標函數(shù)可以用兩個互不相干的部分來表述:其中:
最優(yōu)位置是由如下坐標組成的點:xs是在x方向的所有的權重wi的中值點,ys是在y方向的所有的權重wi的中值點。Cross-medianmethod總費用=設施到需求點的19
Thegeneticalgorithm(GA)isasearchheuristic(啟發(fā)式)thatmimics(模仿)theprocessofnaturalevolution.Thisheuristicisroutinelyusedtogenerateusefulsolutionstooptimizationandsearchproblems.Geneticalgorithmsbelongtothelargerclassofevolutionaryalgorithms(EA)(進化算法),whichgeneratesolutions(生成解決方案)tooptimizationproblemsusingtechniquesinspiredbynaturalevolution,suchasinheritance(繼承),mutation(突變),selection(選擇),andcrossover(雜交).
GeneticalgorithmThegeneticalgorithm(G20SimulatedAnnealing
Simulatedannealing(SA)isagenericprobabilisticmetaheuristic(啟發(fā)式)fortheglobaloptimizationproblemofappliedmathematics(應用數(shù)學),namelylocatingagoodapproximation(逼近)totheglobaloptimumofagivenfunctioninalargesearchspace.Itisoftenusedwhenthesearchspaceisdiscrete(e.g.,alltoursthatvisitagivensetofcities).Forcertainproblems,simulatedannealingmaybemoreeffectivethanexhaustiveenumeration(窮舉法)—providedthatthegoalismerelytofindanacceptablygoodsolutioninafixedamountoftime,ratherthanthebestpossiblesolution.SimulatedAnnealingSimu21MinisumMinimaxMaximin
Minisum被稱為網(wǎng)絡上的中值問題。Minimax被稱為網(wǎng)絡上的中心問題。Maximin被稱為反中心問題(Anti-Center)。假設在一條直線上,在位置0,5,6和7上有4個點。為每個點服務的成本與這些點和新設施間的距離成正比。對于Minisum目標來說,新設施的最優(yōu)位置是這些點的中值5.5,即在選址的左邊和右邊有相同多的點。對于Minimax目標來說,最優(yōu)位置就是這些點的中心3.5,即選址位置到最左邊點和最右邊點的距離是相等的。對于Maximin目標來說最優(yōu)位置是反中心點2.5。Maximin目標由已存在設施中成本最小的個體組成,目標是使最壞的情況最優(yōu)化。MinisumMinimaxMaximin22multi-sourceWeberproblem(MWP)多來源韋伯問題
ThisproblemisNP-hard,Itcanbemodelledasthenon-linearmixed-integerprogram(非線性混合整數(shù)規(guī)劃).multi-sourceWeberproblem(MW23P-medianproblem中值問題(PMP)
P-centerproblem中值問題(PCP)其中:P-medianproblem中值問題(PMP)P-c24Uncapacitated,single-stagemodels(無容量限制單階段模型)Capacitated,single-stagemodels(有容量限制單階段模型)Uncapacitated,single-stagemo25Two-stagecapacitatedfacilitylocationproblem(帶容量限制的兩階段設施選址問題)Two-stagecapacitatedfacility26multi-productmodels(多產(chǎn)品模型)multi-productmodels(多產(chǎn)品模型)27dynamicmodels(動態(tài)模型)dynamicmodels(動態(tài)模型)28probabilisticmodels(概率模型)probabilisticmodels(概率模型)29Thankyou!Thankyou!30Facilitylocationmodelsfordistributionsystemdesign物流系統(tǒng)設計的選址模型Facilitylocationmodelsford31IntroductionTypesofmodelsGeneralmethodsIntroduction32
Thedesignofthedistributionsystemisastrategicissueforalmosteverycompany.Theproblemoflocatingfacilitiesandallocatingcustomerscoversthecoretopicsofdistributionsystemdesign.
IntroductionThedesignofthedistrib33
Industrialfirmsmustlocatefabrication(制造廠)andassemblyplants(組裝廠)aswellaswarehouses(倉庫).Storeshavetobelocatedbyretailoutlets(零售網(wǎng)點).Theabilitytomanufactureandmarketitsproductsisdependentinpartonthelocationofthefacilities.Similarly,governmentagencieshavetodecideaboutthelocationofoffices,schools,hospitals,firestations,etc.Ineverycase,thequalityoftheservicesdependsonthelocationofthefacilitiesinrelationtootherfacilities.Industrialfirmsmustloc34Typesofmodels
Theproblemoflocatingfacilitiesisnotnewtotheoperationsresearchcommunity(運籌學);thechallengeofwheretobestsitefacilitieshasinspiredarich,colorfulandevergrowingbodyofliterature.Tocopewiththemultitudeofapplications(眾多應用)encounteredinthebusinessworldandinthepublicsector,aneverexpandingfamilyofmodelshasemerged.TypesofmodelsTheprob35Facilitylocationmodelscanbebroadlyclassifiedasfollows:
Theshapeortopographyofthesetofpotentialplantsyieldsmodelsintheplane,networklocationmodels(網(wǎng)絡選址模型),anddiscretelocation(離散選址)ormixed-integerprogrammingmodels(混合正數(shù)規(guī)劃模型),respectively.Facilitylocationmodelscanb36Objectives(目標函數(shù))maybeeitheroftheminsumortheminmaxtype.Minsummodelsaredesignedtominimizeaveragedistanceswhileminmaxmodelshavetominimizemaximumdistances.Predominantly(此外),minsummodelsembracelocationproblemsofprivatecompanieswhileminmaxmodelsfocusonlocationproblemsarisinginthepublicsector.Objectives(目標函數(shù))maybeeither37Modelswithoutcapacityconstraintsdonotrestrict(限制)demandallocation.Ifcapacityconstraintsforthepotentialsiteshavetobeobeyeddemandhastobeallocatedcarefully.Inthelattercasewehavetoexaminewhethersingle-sourcing(單來源)ormultiple-sourcing(多來源)isessential.Modelswithoutcapacityconstr38Single-stagemodels(單階段模型)focusondistributionsystemscoveringonlyonestageexplicitly.Inmulti-stagemodels(多階段模型)theflowofgoodscomprisingseveralhierarchical(層次)stageshastobeexamined.Single-stagemodels(單階段模型)foc39Single-productmodels(單產(chǎn)品模型)arecharacterizedbythefactthatdemand,costandcapacityforseveralproductscanbeaggregatedtoasinglehomogeneousproduct.Ifproductsareinhomogeneoustheireffectonthedesignofthedistributionsystemhastobeanalyzed,viz.multi-productmodels(多產(chǎn)品模型)havetobestudied.Single-productmodels(單產(chǎn)品模型)a40Locationmodelsbaseontheassumptionthatdemandisinelastic(無彈性的),thatis,demandisindependentofspatialdecisions.Ifdemandiselastic(彈性的)therelationshipbetween,e.g.,distanceanddemandhastobetakenintoaccountexplicitly.Inthelattercasecostminimization(成本最小)hastobereplacedthrough,forexample,revenuemaximization(收益最大).物流系統(tǒng)設計的選址模型介紹(英文版)課件41Staticmodels(靜態(tài)模型)trytooptimizesystemperformance(性能)foronerepresentative(代表)period.Bycontrastdynamicmodels(動態(tài)模型)reflectdata(cost,demand,capacities,etc.)varyingovertimewithinagivenplanninghorizon.Staticmodels(靜態(tài)模型)trytoopt42Inpracticemodel(實踐模型)inputisusuallynotknownwithcertainty.Dataarebasedonforecastsand,hence,arelikelytobeuncertain.Asaconsequence,wehaveeitherdeterministicmodels(確定模型)ifinputis(assumedtobe)knownwithcertaintyorprobabilisticmodels(概率模型)ifinputissubjecttouncertainty.Inpracticemodel(實踐模型)input43Inclassicalmodelsthequalityofdemandallocationismeasuredonisolationforeachpairofsupplyanddemandpoints.Unfortunately,ifdemandissatisfiedthroughdeliverytours(運輸,投遞)then,forinstance,deliverycostcannotbecalculatedforeachpairofsupplyanddemandpointsseparately.Combinedlocation/routingmodels(選址/路線模型)elaborateonthisinterrelationship.Inclassicalmodelsthequalit44GeneralmethodsAHP(AnalyticHierarchyProcess)層次分析法FuzzyClustering模糊聚類法Cross-medianmethod交叉中值法gravitymethod重心法P-medianmethodP-中值法Systemicarithmetic系統(tǒng)模擬法Geneticalgorithm(GA)遺傳算法Theshortestpathmethod最短路徑法SimulatedAnnealing(SA)模擬退火算法GeneralmethodsAHP(AnalyticH45TheAnalyticHierarchyProcess(AHP)isastructuredtechniquefordealingwithcomplexdeciision.Ratherthanprescribinga"correct"decision,theAHPhelpsthedecisionmakersfindonethatbestsuitstheirgoalandtheirunderstandingoftheproblem.Basedonmathematicsandpsychology,theAHPwasdevelopedbyThomasL.Saatyinthe1970sandhasbeenextensivelystudiedandrefinedsincethen.Itprovidesacomprehensive(全面)andrationalframework(合理的框架)forstructuringadecisionproblem(結(jié)構(gòu)化決策問題),forrepresentingandquantifyingitselements,forrelatingthoseelementstooverallgoals,andforevaluatingalternativesolutions.Itisusedaroundtheworldinawidevarietyofdecisionsituations,infieldssuchasgovernment,business,industry,healthcare,andeducation.AHPTheAnalyticHierarchyProcess46FuzzyClusteringFuzzyclusteringisaclassofalgorithmsforclusteranalysisinwhichtheallocationofdatapointstoclustersisnot"hard"(all-or-nothing)but"fuzzy"inthesamesenseasfuzzylogic.Inhardclustering,dataisdividedintodistinctclusters,whereeachdataelementbelongstoexactlyonecluster.Infuzzyclustering(alsoreferredtoassoftclustering),dataelementscanbelongtomorethanonecluster,andassociatedwitheachelementisasetofmembershiplevels(隸屬關系).Theseindicatethestrengthoftheassociationbetweenthatdataelementandaparticularcluster.Fuzzyclusteringisaprocessofassigningthesemembershiplevels,andthenusingthemtoassigndataelementstooneormoreclusters.FuzzyClusteringFuzzyclusteri47gravitymethod總運費=設施與客戶之間的直線距離(歐幾里德距離)×需求量
對上式分別對x,y求偏微分,可以求出下面的一對隱含有最優(yōu)解的等式,應用這兩個等式通過迭代的方法分別對x,y進行求解,即可得最優(yōu)解。gravitymethod總運費=設施與客戶之間的直線距離48Cross-medianmethod總費用=設施到需求點的折線距離(城市距離)×需求量上述目標函數(shù)可以用兩個互不相干的部分來表述:其中:
最優(yōu)位置是由如下坐標組成的點:xs是在x方向的所有的權重wi的中值點,ys是在y方向的所有的權重wi的中值點。Cross-medianmethod總費用=設施到需求點的49
Thegeneticalgorithm(GA)isasearchheuristic(啟發(fā)式)thatmimics(模仿)theprocessofnaturalevolution.Thisheuristicisroutinelyusedtogenerateusefulsolutionstooptimizationandsearchproblems.Geneticalgorithmsbelongtothelargerclassofevolutionaryalgorithms(EA)(進化算法),whichgeneratesolutions(生成解決方案)tooptimizationproblemsusingtechniquesinspiredbynaturalevolution,suchasinheritance(繼承),mutation(突變),selection(選擇),andcrossover(雜交).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古電子信息職業(yè)技術學院《中藥分析》2023-2024學年第二學期期末試卷
- 南昌大學《PYTHON編程基礎與實踐》2023-2024學年第二學期期末試卷
- 湖南信息學院《教育書法》2023-2024學年第二學期期末試卷
- 重慶電子工程職業(yè)學院《酒吧經(jīng)營與管理》2023-2024學年第二學期期末試卷
- 南陽農(nóng)業(yè)職業(yè)學院《國際貿(mào)易金融家》2023-2024學年第二學期期末試卷
- 菏澤家政職業(yè)學院《管理案例》2023-2024學年第二學期期末試卷
- 重慶2025年重慶醫(yī)科大學招聘65人筆試歷年參考題庫附帶答案詳解
- 撫順職業(yè)技術學院《空調(diào)用制冷工程課程設計》2023-2024學年第二學期期末試卷
- 2025至2030年中國折疊凳數(shù)據(jù)監(jiān)測研究報告
- 2025至2031年中國網(wǎng)球燈行業(yè)投資前景及策略咨詢研究報告
- 安全現(xiàn)狀評價報告三篇
- 《蜀相》課件 2023-2024學年統(tǒng)編版高中語文選擇性必修下冊-2
- 南方日報圖片管理系統(tǒng)開發(fā)項目進度管理研究任務書
- 《建筑工程設計文件編制深度規(guī)定》(2022年版)
- 2024-2030年中國煉油行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究報告
- 小學三年級奧數(shù)入學測試題
- 我國大型成套設備出口現(xiàn)狀、發(fā)展前景及政策支持研究
- GB/T 44093-2024排球課程學生運動能力測評規(guī)范
- 2024屆廣東省普通高中學業(yè)水平合格性考試數(shù)學模擬卷4
- 河南省鄭州市2023-2024學年高一下學期6月期末數(shù)學試題(無答案)
- 全套電子課件:極限配合與技術測量(第五版)
評論
0/150
提交評論