


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Word———高一數(shù)學(xué)下冊知識點總結(jié)
高一數(shù)學(xué)下冊學(xué)問點總結(jié)篇一
1、集合的含義
2、集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
留意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
高一數(shù)學(xué)下冊學(xué)問點總結(jié)篇二
對于a的取值為非零有理數(shù),有必要分成幾種狀況來爭論各自的特性:
首先我們知道假如a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),假如q是奇數(shù),函數(shù)的定義域是R,假如q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),明顯x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
排解了為0與負數(shù)兩種可能,即對于x0,則a可以是任意實數(shù);
排解了為0這種可能,即對于x0和x0的全部實數(shù),q不能是偶數(shù);
排解了為負數(shù)這種可能,即對于x為大于且等于0的全部實數(shù),a就不能是負數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不憐憫況如下:假如a為任意實數(shù),則函數(shù)的定義域為大于0的全部實數(shù);
假如a為負數(shù),則x確定不能為0,不過這時函數(shù)的定義域還必需依據(jù)q的奇偶性來確定,即假如同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的全部實數(shù);假如同時q為奇數(shù),則函數(shù)的定義域為不等于0的全部實數(shù)。
在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
而只有a為正數(shù),0才進入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自狀況。
可以看到:
(1)全部的圖形都通過(1,1)這點。
(2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。
(6)明顯冪函數(shù)無界。
高一數(shù)學(xué)下冊學(xué)問點總結(jié)篇三
本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等學(xué)問點。主要是理解函數(shù)解應(yīng)用題的一般步驟敏捷利用函數(shù)解答實際應(yīng)用題。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應(yīng)用題的基本步驟是:
(1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);
(2)設(shè)量建模;
(3)求解函數(shù)模型;
(4)簡要回答實際問題。
誤區(qū)提示
1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。
2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。
高一數(shù)學(xué)下冊學(xué)問點總結(jié)篇四
1、對數(shù)的概念
(1)對數(shù)的定義:
假如ax=N(a>0且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù)。當(dāng)a=10時叫常用對數(shù)。記作x=lg_N,當(dāng)a=e時叫自然對數(shù),記作x=ln_N.
(2)對數(shù)的常用關(guān)系式(a,b,c,d均大于0且不等于1):
①loga1=0.
②logaa=1.
③對數(shù)恒等式:alogaN=N.
二、解題方法
1、在運用性質(zhì)logaMn=nlogaM時,要特殊留意條件,在無M>0的條件下應(yīng)為logaMn=nloga|M|(n∈N*,且n為偶數(shù))。
2、對數(shù)值取正、負值的規(guī)律:
當(dāng)a>1且b>1,或0當(dāng)a>1且00}。對數(shù)函數(shù)的單調(diào)性和a的值有關(guān),因而,在討論對數(shù)函數(shù)的單調(diào)性時,要按04、對數(shù)式的化簡與求值的常用思路
(1)先利用冪的運算把底數(shù)或真數(shù)進行變形,化成分數(shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后正用對數(shù)運算法則化簡合并。
(2)先將對數(shù)式化為同底數(shù)對數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算法則,轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪再運算。
高一數(shù)學(xué)下冊學(xué)問點總結(jié)篇五
1、函數(shù)的基本概念
(1)函數(shù)的定義:設(shè)A、B是非空數(shù)集,假如根據(jù)某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么稱f:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A.
(2)函數(shù)的定義域、值域
在函數(shù)y=f(x),x∈A中,x叫自變量,x的取值范圍A叫做定義域,與x的值對應(yīng)的《我·.》y值叫函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫值域。值域是集合B的子集。
(3)函數(shù)的三要素:定義域、值域和對應(yīng)關(guān)系。
(4)相等函數(shù):假如兩個函數(shù)的定義域和對應(yīng)關(guān)系完全全都,則這兩個函數(shù)相等;這是推斷兩函數(shù)相等的依據(jù)。
2、函數(shù)的三種表示方法
表示函數(shù)的常用方法有:解析法、列表法、圖象法。
3、映射的概念
一般地,設(shè)A、B是兩個非空的集合,假如按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個映射。
留意:
一個方法
求復(fù)合函數(shù)y=f(t),t=q(x)的定義域的方法:
若y=f(t)的定義域為(a,b),則解不等式得a
兩個防范
(1)解決函數(shù)問題,必需優(yōu)先考慮函數(shù)的定義域。
(2)用換元法解題時,應(yīng)留意換元前后的等價性。
三個要素
函數(shù)的三要素是:定義域、值域和對應(yīng)關(guān)系。值域是由函數(shù)的定義域和對應(yīng)關(guān)系所確定的。兩個函數(shù)的定義域和對應(yīng)關(guān)系完全全都時,則認為兩個函數(shù)相等。函數(shù)是特別的映射,映射f:A→B的三要素是兩個集合A、B和對應(yīng)關(guān)系f.
高一數(shù)學(xué)下冊學(xué)問點總結(jié)篇六
圓的方程定義:
圓的標(biāo)準方程(x-a)2+(y-b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個自立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關(guān)系:
1、直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來爭論位置關(guān)系。
①Δ0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離。
2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種狀況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種狀況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質(zhì)
⑴圓心到切線的距離等于圓的半徑;
⑵過切點的半徑垂直于切線;
⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;
⑷經(jīng)過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45133-2025氣體分析混合氣體組成的測定基于單點和兩點校準的比較法
- 信訪合同范本
- 單位采購柜子合同范本
- 出售餐飲椅子合同范本
- 單位同意入職合同范本
- 出租轉(zhuǎn)讓吊車合同范本
- 個人購買黃金合同范本
- 信息咨詢合作合同范本
- 農(nóng)資商店用工合同范本
- 單位用人聘用合同范本
- 車轍防治指導(dǎo)意見(確定稿)
- 標(biāo)準擊實試驗自動計算記錄表
- 一個近乎完美的微信引流招生方案
- 門診特殊病種審批表
- 旅行社安全檢查記錄表
- T_CEC 102.1-2016 電動汽車充換電服務(wù)信息交換 第1部分_總則_(高清-最新版)
- 國際形式發(fā)票模板
- 山西省會計師事務(wù)所服務(wù)收費標(biāo)準(匯編)
- 陜西延長石油(集團)有限責(zé)任公司企業(yè)年金方案
- 常用偽裝方法組訓(xùn)方案
- 績效工資的計算與考核
評論
0/150
提交評論