以橢圓雙曲線拋物線為背景的計(jì)算知識(shí)點(diǎn)_第1頁(yè)
以橢圓雙曲線拋物線為背景的計(jì)算知識(shí)點(diǎn)_第2頁(yè)
以橢圓雙曲線拋物線為背景的計(jì)算知識(shí)點(diǎn)_第3頁(yè)
以橢圓雙曲線拋物線為背景的計(jì)算知識(shí)點(diǎn)_第4頁(yè)
以橢圓雙曲線拋物線為背景的計(jì)算知識(shí)點(diǎn)_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

【最新考綱解讀】1.圓錐曲線(1)了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問(wèn)題中的作用.(2)掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì).(3)了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡(jiǎn)單幾何性質(zhì).(4)了解圓錐曲線的簡(jiǎn)單應(yīng)用.(5)理解數(shù)形結(jié)合的思想.2.曲線與方程結(jié)合已學(xué)過(guò)的曲線及其方程的實(shí)例,了解曲線與方程的對(duì)應(yīng)關(guān)系,進(jìn)一步感受數(shù)形結(jié)合的基本思想.【回歸課本整合】1.橢圓的第一定義:平面內(nèi)到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)()的點(diǎn)的軌跡.注意:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無(wú)軌跡。2.直線和橢圓的位置關(guān)系(1)位置關(guān)系判斷:直線與橢圓方程聯(lián)立方程組,消掉y,得到的形式(這里的系數(shù)A一定不為0),設(shè)其判別式為,(1)相交:直線與橢圓相交;(2)相切:直線與橢圓相切;(3)相離:直線與橢圓相離;(2弦長(zhǎng)公式:(1)若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則=,若分別為A、B的縱坐標(biāo),則=,若弦AB所在直線方程設(shè)為,則=。(2)焦點(diǎn)弦(過(guò)焦點(diǎn)的弦):焦點(diǎn)弦的弦長(zhǎng)的計(jì)算,一般不用弦長(zhǎng)公式計(jì)算,而是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。橢圓左焦點(diǎn)弦,右焦點(diǎn)弦.其中最短的為通徑:,最長(zhǎng)為;(3)橢圓的中點(diǎn)弦問(wèn)題:遇到中點(diǎn)弦問(wèn)題常用“韋達(dá)定理”或“點(diǎn)差法”求解。在橢圓中,以為中點(diǎn)的弦所在直線的斜率.3.與焦點(diǎn)三角形相關(guān)的結(jié)論橢圓上的一點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角,通常叫做焦點(diǎn)三角形.一般與焦點(diǎn)三角形的相關(guān)問(wèn)題常利用橢圓的第一定義和正弦、余弦定理求解.設(shè)橢圓上的一點(diǎn)到兩焦點(diǎn)的距離分別為,焦點(diǎn)的面積為,設(shè),則在橢圓中,有以下結(jié)論:(1)=,且當(dāng)即為短軸端點(diǎn)時(shí),最大為=;(2);焦點(diǎn)三角形的周長(zhǎng)為;(3),當(dāng)即為短軸端點(diǎn)時(shí),的最大值為;4.直線和拋物線的位置關(guān)系(1)位置關(guān)系判斷:直線與雙曲線方程聯(lián)立方程組,消掉y,得到的形式,當(dāng),直線和拋物線相交,且與拋物線的對(duì)稱軸并行,此時(shí)與拋物線只有一個(gè)交點(diǎn),當(dāng)設(shè)其判別式為,①相交:直線與拋物線有兩個(gè)交點(diǎn);②相切:直線與拋物線有一個(gè)交點(diǎn);③相離:直線與拋物線沒有交點(diǎn).注意:過(guò)拋物線外一點(diǎn)總有三條直線和拋物線有且只有一個(gè)公共點(diǎn):兩條切線和一條平行于對(duì)稱軸的直線.(2)焦點(diǎn)弦:若拋物線的焦點(diǎn)弦為AB,,則有,.(3)在拋物線中,以為中點(diǎn)的弦所在直線的斜率.(4)若OA、OB是過(guò)拋物線頂點(diǎn)O的兩條互相垂直的弦,則直線AB恒經(jīng)過(guò)定點(diǎn),反之亦成立.5.求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說(shuō)明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動(dòng)點(diǎn)坐標(biāo).建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo).所研究的問(wèn)題已給出坐標(biāo)系,即可直接設(shè)點(diǎn).沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系.2、現(xiàn)(限):由限制條件,列出幾何等式.寫出適合條件P的點(diǎn)M的集合P={M|P(M)}這是求曲線方程的重要一步,應(yīng)仔細(xì)分析題意,使寫出的條件簡(jiǎn)明正確.3、“代”:代換用坐標(biāo)法表示條件P(M),列出方程f(x,y)=0常常用到一些公式.4、“化”:化簡(jiǎn)化方程f(x,y)=0為最簡(jiǎn)形式.要注意同解變形.5、證明證明化簡(jiǎn)以后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).化簡(jiǎn)的過(guò)程若是方程的同解變形,可以不要證明,變形過(guò)程中產(chǎn)生不增根或失根,應(yīng)在所得方程中刪去或補(bǔ)上(即要注意方程變量的取值范圍).注意:這五個(gè)步驟(不包括證明)可濃縮為五字“口訣”:建設(shè)現(xiàn)(限)代化.【方法技巧提煉】1.直線與橢圓的位置關(guān)系在直線與橢圓的位置關(guān)系問(wèn)題中,一類是直線和橢圓關(guān)系的判斷,利用判別式法.另一類常與“弦”相關(guān):“平行弦”問(wèn)題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問(wèn)題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長(zhǎng)度(弦長(zhǎng))”問(wèn)題關(guān)鍵是長(zhǎng)度(弦長(zhǎng))公式.在求解弦長(zhǎng)問(wèn)題中,要注意直線是否過(guò)焦點(diǎn),如果過(guò)焦點(diǎn),一般可采用焦半徑公式求解;如果不過(guò),就用一般方法求解.要注意利用橢圓自身的范圍來(lái)確定自變量的范圍,涉及二次方程時(shí)一定要注意判別式的限制條件.2.如何利用拋物線的定義解題(1)求軌跡問(wèn)題:主要抓住到定點(diǎn)的距離和到定直線距離的幾何特征,并驗(yàn)證其滿足拋物線的定義,然后直接利用定義便可確定拋物線的方程;(2)求最值問(wèn)題:主要把握兩個(gè)轉(zhuǎn)化:一是把拋物線上的點(diǎn)到焦點(diǎn)的距離可以轉(zhuǎn)化為到準(zhǔn)線的距離;二是把點(diǎn)到拋物線的距離轉(zhuǎn)化為到焦點(diǎn)的距離.在解題時(shí)要準(zhǔn)確把握題設(shè)的條件,進(jìn)行有效的轉(zhuǎn)化,探求最值問(wèn)題.3.求曲線方程的常見方法:(1)直接法:直接法是將動(dòng)點(diǎn)滿足的幾何條件或者等量關(guān)系,直接坐標(biāo)化,列出等式化簡(jiǎn)即得動(dòng)點(diǎn)軌跡方程(2)定義法:若動(dòng)點(diǎn)軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求(3)相關(guān)點(diǎn)法:即利用動(dòng)點(diǎn)是定曲線上的動(dòng)點(diǎn),另一動(dòng)點(diǎn)依賴于它,那么可尋求它們坐標(biāo)之間的關(guān)系,然后代入定曲線的方程進(jìn)行求解根據(jù)相關(guān)點(diǎn)所滿足的方程,通過(guò)轉(zhuǎn)換而求動(dòng)點(diǎn)的軌跡方程(4)參數(shù)法:若動(dòng)點(diǎn)的坐標(biāo)(x,y)中的x,y分別隨另一變量的變化而變化,我們可以以這個(gè)變量為參數(shù),建立軌跡的參數(shù)方程.根據(jù)題中給定的軌跡條件,用一個(gè)參數(shù)來(lái)分別動(dòng)點(diǎn)的坐標(biāo),間接地把坐標(biāo)x,y聯(lián)系起來(lái),得到用參數(shù)表示的方程.如果消去參數(shù),就可以得到軌跡的普通方程.注意:(1)求曲線的軌跡與求曲線的軌跡方程的區(qū)別:求曲線的軌跡是在求出曲線軌跡方程后,再進(jìn)一步說(shuō)明軌跡是什么樣的曲線.(2)求軌跡方程,一定要注意軌跡的純粹性和完備性.要注意區(qū)別“軌跡”與“軌跡方程”是兩個(gè)不同的概念.4.解析幾何解題的基本方法解決圓錐曲線綜合題,關(guān)鍵是熟練掌握每一種圓錐曲線的定義、標(biāo)準(zhǔn)方程、圖形與幾何性質(zhì),注意挖掘知識(shí)的內(nèi)在聯(lián)系及其規(guī)律,通過(guò)對(duì)知識(shí)的重新組合,以達(dá)到鞏固知識(shí)、提高能力的目的.綜合題中常常離不開直線與圓錐曲線的位置,因此,要樹立將直線與圓錐曲線方程聯(lián)立,應(yīng)用判別式、韋達(dá)定理的意識(shí).解析幾何應(yīng)用問(wèn)題的解題關(guān)鍵是建立適當(dāng)?shù)淖鴺?biāo)系,合理建立曲線模型,然后轉(zhuǎn)化為相應(yīng)的代數(shù)問(wèn)題作出定量或定性的分析與判斷.常用的方法:數(shù)形結(jié)合法,以形助數(shù),用數(shù)定形.在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份――對(duì)稱性、利用到角公式)、“方程與函數(shù)性質(zhì)”化解析幾何問(wèn)題為代數(shù)問(wèn)題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等.5.避免繁復(fù)運(yùn)算的基本方法可以概括為:回避,選擇,尋求.所謂回避,就是根據(jù)題設(shè)的幾何特征,靈活運(yùn)用曲線的有關(guān)定義、性質(zhì)等,從而避免化簡(jiǎn)方程、求交點(diǎn)、解方程等繁復(fù)的運(yùn)算.所謂選擇,就是選擇合適的公式,合適的參變量,合適的坐標(biāo)系等,一般以直接性和間接性為基本原則.因?yàn)閷?duì)普通方程運(yùn)算復(fù)雜的問(wèn)題,用參數(shù)方程可能會(huì)簡(jiǎn)單;在某一直角坐標(biāo)系下運(yùn)算復(fù)雜的問(wèn)題,通過(guò)移軸可能會(huì)簡(jiǎn)單;在直角坐標(biāo)系下運(yùn)算復(fù)雜的問(wèn)題,在極坐標(biāo)系下可能會(huì)簡(jiǎn)單“所謂尋求”.6.解析幾何與向量綜合時(shí)可能出現(xiàn)的向量?jī)?nèi)容:(1)給出直線的方向向量或;(2)給出與相交,等于已知過(guò)的中點(diǎn);(3)給出,等于已知是的中點(diǎn);(4)給出,等于已知與的中點(diǎn)三點(diǎn)共線;(5)給出以下情形之一:①;②存在實(shí)數(shù);③若存在實(shí)數(shù),等于已知三點(diǎn)共線;(6)給出,等于已知是的定比分點(diǎn),為定比,即;(7)給出,等于已知,即是直角,給出,等于已知是鈍角,給出,等于已知是銳角;(8)給出,等于已知是的平分線;(9)在平行四邊形中,給出,等于已知是菱形;(10)在平行四邊形中,給出,等于已知是矩形;(11)在中,給出,等于已知是的外心(三角形外接圓的圓心,三角形的外心是三角形三邊垂直平分線的交點(diǎn));(12)在中,給出,等于已知是的重心(三角形的重心是三角形三條中線的交點(diǎn));(13)在中,給出,等于已知是的垂心(三角形的垂心是三角形三條高的交點(diǎn));(14)在中,給出等于已知通過(guò)的內(nèi)心;(15)在中,給出等于已知是的內(nèi)心(三角形內(nèi)切圓的圓心,三角形的內(nèi)心是三角形三條角平分線的交點(diǎn));(16)在中,給出,等于已知是中邊的中線。7.定點(diǎn)、定值問(wèn)題必然是在變化中所表現(xiàn)出來(lái)的不變的量,那么就可以用變化的量表示問(wèn)題的直線方程、數(shù)量積、比例關(guān)系等,這些直線方程、數(shù)量積、比例關(guān)系不受變化的量所影響的一個(gè)點(diǎn)、一個(gè)值,就是要求的定點(diǎn)、定值.化解這類問(wèn)題難點(diǎn)的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量.8.解決圓錐曲線中最值、范圍問(wèn)題的基本思想是建立目標(biāo)函數(shù)和建立不等關(guān)系,根據(jù)目標(biāo)函數(shù)和不等式求最值、范圍,因此這類問(wèn)題的難點(diǎn),就是如何建立目標(biāo)函數(shù)和不等關(guān)系.建立目標(biāo)函數(shù)或不等關(guān)系的關(guān)鍵是選用一個(gè)合適變量,其原則是這個(gè)變量能夠表達(dá)要解決的問(wèn)題,這個(gè)變量可以是直線的斜率、直線的截距、點(diǎn)的坐標(biāo)等,要根據(jù)問(wèn)題的實(shí)際情況靈活處理?!究紙?chǎng)經(jīng)驗(yàn)分享】1.判斷兩種標(biāo)準(zhǔn)方程的方法為比較標(biāo)準(zhǔn)形式中x2與y2的分母大小,若x2的分母比y2的分母大,則焦點(diǎn)在x軸上,若x2的分母比y2的分母小,則焦點(diǎn)在y軸上.4.直線和拋物線若有一個(gè)公共點(diǎn),并不能說(shuō)明直線和拋物線相切,還有可能直線與拋物線的對(duì)稱軸平行.5.在求得軌跡方程之后,要深入地思考一下:(1)是否還遺漏了一些點(diǎn)?是否還有另一個(gè)滿足條件的軌跡方程存在?(2)在所求得的軌跡方程中,x,y的取值范圍是否有什么限制?確保軌跡上的點(diǎn)“不多不少”.6.作為解答題的倒數(shù)第二個(gè),試題的難度較大,也體現(xiàn)在計(jì)算量上尤為明顯,同學(xué)們解題時(shí)往往會(huì)思路,但是算不對(duì),對(duì)此,建議如下:(1)第一問(wèn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論