2023屆北京市五十七中學高一數(shù)學第一學期期末檢測試題含解析_第1頁
2023屆北京市五十七中學高一數(shù)學第一學期期末檢測試題含解析_第2頁
2023屆北京市五十七中學高一數(shù)學第一學期期末檢測試題含解析_第3頁
2023屆北京市五十七中學高一數(shù)學第一學期期末檢測試題含解析_第4頁
2023屆北京市五十七中學高一數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,則函數(shù)的零點所在的區(qū)間為()A. B.C. D.2.已知設alog30.2,b30.2,c0.23,則a,b,c的大小關系是()A.abc B.acbC.bac D.bca3.國家質量監(jiān)督檢驗檢疫局發(fā)布的相關規(guī)定指出,飲酒駕車是指車輛駕駛人員血液中的酒精含量大于或者等于,小于的駕駛行為;醉酒駕車是指車輛駕駛人員血液中的酒精含量大于或者等于的駕駛行為.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的變化規(guī)律的“散點圖”如圖所示,且圖中的函數(shù)模型為:,假設某成年人喝一瓶啤酒后至少經(jīng)過小時才可以駕車,則的值為()(參考數(shù)據(jù):,)A.5 B.6C.7 D.84.已知函數(shù)若曲線與直線的交點中,相鄰交點的距離的最小值為,則的最小正周期為A. B.C. D.5.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.6.函數(shù)的零點所在的區(qū)間是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)7.已知為平面,為直線,下列命題正確的是A.,若,則B.,則C.,則D.,則8.函數(shù)的增區(qū)間是A. B.C. D.9.在中,已知,則角()A. B.C. D.或10.圓:與圓:的位置關系是A.相交 B.相離C.外切 D.內切二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)y=cos2x-sinx的值域是__________________12.設,用表示不超過的最大整數(shù).則稱為高斯函數(shù).例如:,,已知函數(shù),則的值域為___________.13.如圖,在棱長均相等的正四棱錐最終,為底面正方形的重心,分別為側棱的中點,有下列結論:①平面;②平面平面;③;④直線與直線所成角的大小為其中正確結論的序號是______.(寫出所有正確結論的序號)14.已知函數(shù),則函數(shù)的所有零點之和為________15.已知函數(shù)的最大值為3,最小值為1,則函數(shù)的值域為_________.16.為了得到函數(shù)的圖象,可以將函數(shù)的圖象向右平移_________個單位長度而得三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)()在同一半周期內的圖象過點,,,其中為坐標原點,為函數(shù)圖象的最高點,為函數(shù)的圖象與軸正半軸的交點,為等腰直角三角形.(1)求的值;(2)將繞點按逆時針方向旋轉角(),得到,若點和點都恰好落在曲線()上,求的值.18.已知函數(shù)的部分圖象如圖所示(1)求的解析式及對稱中心坐標:(2)先把的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若當時,求的值域19.函數(shù)=的部分圖像如圖所示.(1)求函數(shù)的單調遞減區(qū)間;(2)將的圖像向右平移個單位,再將橫坐標伸長為原來的倍,得到函數(shù),若在上有兩個解,求的取值范圍.20.已知集合,.(1)求,;(2)已知集合,若,求實數(shù)的取值范圍.21.已知向量,,且,滿足關系.(1)求向量,的數(shù)量積用k表示的解析式;(2)求向量與夾角的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)的單調性,結合零點存在性定理,即可得出結論.【詳解】在單調遞增,且,根據(jù)零點存在性定理,得存在唯一的零點在區(qū)間上.故選:B【點睛】本題考查判斷函數(shù)零點所在區(qū)間,結合零點存在性定理的應用,屬于基礎題.2、D【解析】由指數(shù)和對數(shù)函數(shù)單調性結合中間量0和1來比較a,b,c的大小關系即可有結果.【詳解】因為,,所以故選:D3、B【解析】由散點圖知,該人喝一瓶啤酒后個小時內酒精含量大于或者等于,所以,根據(jù)題意列不等式,解不等式結合即可求解.【詳解】由散點圖知,該人喝一瓶啤酒后個小時內酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因為,所以最小為,所以至少經(jīng)過小時才可以駕車,故選:B.4、D【解析】將函數(shù)化簡,根據(jù)曲線y=f(x)與直線y=1的交點中,相鄰交點的距離的最小值為,即ωx2kπ或ωx2kπ,k∈Z,建立關系,可得ω的值,即得f(x)的最小正周期【詳解】解:函數(shù)f(x)=cosωx+sinωx,ω>0,x∈R化簡可得:f(x)sin(ωx)∵曲線y=f(x)與直線y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故選D【點睛】本題考查了和差公式、三角函數(shù)的圖象與性質、三角函數(shù)的方程的解法,考查了推理能力與計算能力,屬于中檔題5、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質,屬于中檔題.6、C【解析】利用零點存在性定理判斷即可.【詳解】易知函數(shù)的圖像連續(xù),,由零點存在性定理,排除A;又,,排除B;,,結合零點存在性定理,C正確故選:C.【點睛】判斷零點所在區(qū)間,只需利用零點存在性定理,求出區(qū)間端點的函數(shù)值,兩者異號即可,注意要看定義域判斷圖像是否連續(xù).7、D【解析】選項直線有可能在平面內;選項需要直線在平面內才成立;選項兩條直線可能異面、平行或相交.選項符合面面平行的判定定理,故正確.8、A9、C【解析】利用正弦定理求出角的正弦值,再求出角的度數(shù).【詳解】因為,所以,解得:,,因為,所以.故選:C.10、A【解析】求出兩圓的圓心和半徑,用圓心距與半徑和、差作比較,得出結論.【詳解】圓的圓心為(1,0),半徑為1,圓的圓心為(0,2),半徑為2,故兩圓圓心距為,兩半徑之和為3,兩半徑之差為1,其中,故兩圓相交,故選:A.【點睛】本題主要考查兩圓的位置關系,需要學生熟悉兩圓位置的五種情形及其判定方法,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將原函數(shù)轉換成同名三角函數(shù)即可.【詳解】,,當時取最大值,當時,取最小值;故答案為:.12、【解析】對進行分類討論,結合高斯函數(shù)的知識求得的值域.【詳解】當為整數(shù)時,,當不是整數(shù),且時,,當不是整數(shù),且時,,所以的值域為.故答案為:13、①②③【解析】連接AC,易得PC∥OM,可判結論①證得平面PCD∥平面OMN,可判結論②正確由勾股數(shù)可得PC⊥PA,得到OM⊥PA,可判結論③正確根據(jù)線線平行先找到直線PD與直線MN所成的角為∠PDC,知三角形PDC為等邊三角形,所以∠PDC=60°,可判④錯誤【詳解】如圖,連接AC,易得PC∥OM,所以PC∥平面OMN,結論①正確同理PD∥ON,所以平面PCD∥平面OMN,結論②正確由于四棱錐的棱長均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,結論③正確由于M,N分別為側棱PA,PB的中點,所以MN∥AB,又四邊形ABCD為正方形,所以AB∥CD,所以直線PD與直線MN所成的角即為直線PD與直線CD所成的角,為∠PDC,知三角形PDC為等邊三角形,所以∠PDC=60°,故④錯誤故答案為①②③【點睛】本題考查線面平行、面面平行,考查線線角,考查學生分析解決問題的能力,屬于中檔題14、0【解析】令,得到,在同一坐標系中作出函數(shù)的圖象,利用數(shù)形結合法求解.【詳解】因為函數(shù),所以的對稱中心是,令,得,在同一坐標系中作出函數(shù)的圖象,如圖所示:由圖象知:兩個函數(shù)圖象有8個交點,即函數(shù)有8個零點由對稱性可知:零點之和為0,故答案為:015、【解析】根據(jù)三角函數(shù)性質,列方程求出,得到,進而得到,利用換元法,即可求出的值域【詳解】根據(jù)三角函數(shù)性質,的最大值為,最小值為,解得,則函數(shù),則函數(shù),,令,則,令,由得,,所以,的值域為故答案為:【點睛】關鍵點睛:解題關鍵在于求出后,利用換元法得出,,進而求出的范圍,即可求出所求函數(shù)的值域,難度屬于中檔題16、(答案不唯一);【解析】由于,再根據(jù)平移求解即可.【詳解】解:由于,故將函數(shù)的圖象向右平移個單位長度可得函數(shù)圖像.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)為等腰直角三角形可求解(2)根據(jù)三角函數(shù)定義分別得到、的坐標,再代入中可求解【小問1詳解】由題意可知周期,所以,,為等腰直角三角形,所以.【小問2詳解】由(1)可得,所以,,所以,點,都落在曲線()上,所以可得,,,可得,,由,得,(),所以.18、(1),()(2)【解析】(1)先根據(jù)圖象得到函數(shù)的最大值和最小值,由此列方程組求得的值,根據(jù)周期求得的值,根據(jù)求得的值,由此求得的解析式,進而求出的對稱中心;(2)根據(jù)三角變換法則求得函數(shù)的解析式,再換元即可求出的值域【小問1詳解】由圖象可知:,解得:,又由于,可得:,所以由圖像知,,又因為所以,.所以令(),得:()所以的對稱中心的坐標為()【小問2詳解】依題可得,因為,令,所以,即的值域為19、(1);(2).【解析】(1)先求出w=π,再根據(jù)圖像求出,再求函數(shù)的單調遞減區(qū)間.(2)先求出=,再利用數(shù)形結合求a的取值范圍.【詳解】(1)由題得.所以所以.令所以函數(shù)的單調遞減區(qū)間為.(2)將的圖像向右平移個單位得到,再將橫坐標伸長為原來的倍,得到函數(shù)=,若在上有兩個解,所以,所以所以所以a的取值范圍為.【點睛】本題主要考查三角函數(shù)解析式的求法和單調區(qū)間的求法,考查三角函數(shù)的圖像變換和三角方程的有解問題,考查三角函數(shù)的圖像和性質,意在考查學生對這些知識的掌握水平和分析推理能力.20、(1),;(2).【解析】(1)求出集合,再由集合的交、并、補運算即可求解.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論