版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算:()A.0 B.1C.2 D.32.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關(guān)于直線C.的一個零點為 D.在區(qū)間的最小值為13.命題“任意,都有”的否定為()A.存在,使得B.不存在,使得C.存在,使得D.對任意,都有4.以下給出的是計算的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是A.B.C.D.5.函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點A.(–1,–1) B.(–1,1)C.(0,2a–1) D.(0,1)6.已知向量,若與垂直,則的值等于A. B.C.6 D.27.設(shè)函數(shù)的定義域為R,滿足,且當時,.若對任意,都有,則m的最大值是()A. B.C. D.8.已知定義域為R的偶函數(shù)在上是減函數(shù),且,則不等式的解集為()A. B.C. D.9.已知函數(shù),函數(shù),若有兩個零點,則m的取值范圍是()A. B.C. D.10.已知函數(shù)fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域是__________.12.已知是定義在上的奇函數(shù),當時,,則的值為________________13.在區(qū)間上隨機地取一個實數(shù),若實數(shù)滿足的概率為,則________.14.設(shè)函數(shù)和函數(shù),若對任意都有使得,則實數(shù)a的取值范圍為______15.已知函數(shù)f(x)=(a>0,a≠1)是偶函數(shù),則a=_________,則f(x)的最大值為________.16.已知,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(Ⅰ)求函數(shù)的最小正周期(Ⅱ)求函數(shù)在上的最大值與最小值18.黃山市某鄉(xiāng)鎮(zhèn)響應(yīng)“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足關(guān)系:.肥料成本投入為元,其它成本投入(如培育管理,施肥等人工費)元.已知這種水果的市場售價為15元/千克,且銷路暢通供不應(yīng)求,記該水果樹的單株利潤為(單位:元).(1)求的函數(shù)關(guān)系式;(2)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?19.已知函數(shù),(1)求在上的最小值;(2)記集合,,若,求的取值范圍.20.已知向量,,設(shè)函數(shù)Ⅰ求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;Ⅱ求函數(shù)在區(qū)間的最大值和最小值21.已知函數(shù)的定義域是
A
,不等式的解集是集合
B
,求集合
A
和
.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)指數(shù)對數(shù)恒等式及對數(shù)的運算法則計算可得;【詳解】解:;故選:B2、D【解析】根據(jù)余弦函數(shù)的圖象與性質(zhì)判斷其周期、對稱軸、零點、最值即可.【詳解】函數(shù),周期為,故A錯誤;函數(shù)圖像的對稱軸為,,,不是對稱軸,故B錯誤;函數(shù)的零點為,,,所以不是零點,故C錯誤;時,,所以,即,所以,故D正確.故選:D3、A【解析】根據(jù)全稱量詞命題的否定為特稱量詞命題,改量詞,否結(jié)論,即得答案.【詳解】命題“任意,都有”的否定為“存在,使得”,故選:A4、A【解析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S的值【詳解】程序運行過程中,各變量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此類推,第十圈:S=1+,k=11退出循環(huán)其中判斷框內(nèi)應(yīng)填入的條件是:k≤10,故選A【點睛】算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導(dǎo)致錯誤5、B【解析】令x+1=0,求得x和y的值,從而求得函數(shù)f(x)=2ax+1–1(a>0,且a≠1)恒過定點的坐標【詳解】令x+1=0,求得x=-1,且y=1,故函數(shù)f(x)=2ax+1–1(a>0且a≠1)恒過定點(-1,1),故選B.【點睛】】本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎(chǔ)題6、B【解析】,所以,則,故選B7、A【解析】分別求得,,,,,,,時,的最小值,作出的簡圖,因為,解不等式可得所求范圍【詳解】解:因為,所以,當時,的最小值為;當時,,,由知,,所以此時,其最小值為;同理,當,時,,其最小值為;當,時,的最小值為;作出如簡圖,因為,要使,則有解得或,要使對任意,都有,則實數(shù)的取值范圍是故選:A8、A【解析】根據(jù)偶函數(shù)的性質(zhì)可得在上是增函數(shù),且.由此將不等式轉(zhuǎn)化為來求解得不等式的解集.【詳解】因為偶函數(shù)在上是減函數(shù),所以在上是增函數(shù),由題意知:不等式等價于,即,即或,解得:或.故選:A【點睛】本小題主要考查函數(shù)的奇偶性以及單調(diào)性,考查對數(shù)不等式的解法,屬于中檔題.9、A【解析】存在兩個零點,等價于與的圖像有兩個交點,數(shù)形結(jié)合求解.【詳解】存在兩個零點,等價于與的圖像有兩個交點,在同一直角坐標系中繪制兩個函數(shù)的圖像:由圖可知,當直線在處的函數(shù)值小于等于1,即可保證圖像有兩個交點,故:,解得:故選:A.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解.10、C【解析】根據(jù)導(dǎo)數(shù)求出函數(shù)在區(qū)間上單調(diào)性,然后判斷零點區(qū)間.【詳解】解:根據(jù)題意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函數(shù)的零點定理可知,fx零點的區(qū)間為(2故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、{|且}【解析】根據(jù)函數(shù),由求解.【詳解】因為函數(shù),所以,解得,所以函數(shù)的定義域是{|且},故答案為:{|且}12、-7【解析】由已知是定義在上的奇函數(shù),當時,,所以,則=點睛:利用函數(shù)奇偶性求有關(guān)參數(shù)問題時,要靈活選用奇偶性的常用結(jié)論進行處理,可起到事半功倍的效果:①若奇函數(shù)在處有定義,則;②奇函數(shù)+奇函數(shù)=奇函數(shù),偶函數(shù)+偶函數(shù)=偶函數(shù),奇函數(shù)奇函數(shù)=偶函數(shù)偶函數(shù)=偶函數(shù);③特殊值驗證法13、1【解析】利用幾何概型中的長度比即可求解.【詳解】實數(shù)滿足,解得,,解得,故答案為:1【點睛】本題考查了幾何概率的應(yīng)用,屬于基礎(chǔ)題.14、【解析】先根據(jù)的單調(diào)性求出的值域A,分類討論求得的值域B,再將條件轉(zhuǎn)化為A,進行判斷求解即可【詳解】是上的遞減函數(shù),∴的值域為,令A(yù)=,令的值域為B,因為對任意都有使得,則有A,而,當a=0時,不滿足A;當a>0時,,∴解得;當a<0時,,∴不滿足條件A,綜上得.故答案為.【點睛】本題考查了函數(shù)的值域及單調(diào)性的應(yīng)用,關(guān)鍵是將條件轉(zhuǎn)化為兩個函數(shù)值域的關(guān)系,運用了分類討論的數(shù)學思想,屬于中檔題15、①.②.【解析】根據(jù)偶函數(shù)f(-x)=f(x)即可求a值;分離常數(shù),根據(jù)單調(diào)性即可求最大值,或利用基本不等式求最值.【詳解】是偶函數(shù),,則,則,即,則,則,則,當且僅當,即,則時取等號,即的最大值為,故答案為:,16、【解析】根據(jù),利用誘導(dǎo)公式轉(zhuǎn)化為可求得結(jié)果.【詳解】因為,所以.故答案為:.【點睛】本題考查了利用誘導(dǎo)公式求值,解題關(guān)鍵是拆角:,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值1,最小值0【解析】(1)先利用二倍角正余弦公式以及配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質(zhì)求最小正周期.(2)先根據(jù),得正弦函數(shù)取值范圍,再求函數(shù)最值試題解析:(Ⅰ)∴的最小正周期(Ⅱ)∵,∴,∴,∴,即:當且僅當時,取最小值,當且僅當,即時,取最大值,點睛:三角恒等變換的綜合應(yīng)用主要是將三角變換與三角函數(shù)的性質(zhì)相結(jié)合,通過變換把函數(shù)化為的形式再借助三角函數(shù)圖象研究性質(zhì),解題時注意觀察角、函數(shù)名、結(jié)構(gòu)等特征18、(1)f(2)當施用肥料為5千克時,該水果樹的單株利潤最大,最大利潤是750元【解析】(1)用銷售收入減去成本求得的函數(shù)關(guān)系式.(2)結(jié)合二次函數(shù)的性質(zhì)、基本不等式來求得最大利潤以及此時對應(yīng)的施肥量.小問1詳解】由已知得:,故fx【小問2詳解】若,則,此時,對稱軸為,故有最大值為.若,則,當且僅當,即時等號成立,此時,有最大值為,綜上有,有最大值為750,∴當施用肥料為5千克時,該水果樹的單株利潤最大,最大利潤是750元.19、(1)答案見解析(2)【解析】(1)按對稱軸與區(qū)間的相對位置關(guān)系,分三種情況討論求最小值;(2)分與解不等式,再分析的情況即可求解.【小問1詳解】解:(1)由,拋物線開口向上,對稱軸為,在上的最小值需考慮對稱軸與區(qū)間的位置關(guān)系.(i)當時,;(ii)當時,;(ⅲ)當時,【小問2詳解】(2)解不等式,即,可得:當時,不等式的解為;當時,不等式的解為.(i)當時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時(ii)當時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時無解.綜上所述,的取值范圍.20、(Ⅰ)最小正周期是,增區(qū)間為,;(Ⅱ)最大值為5,最小值為4【解析】Ⅰ根據(jù)向量數(shù)量積,利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;Ⅱ根據(jù)的范圍得的范圍,結(jié)合正弦函數(shù)的單調(diào)性可得的最大最小值【詳解】Ⅰ,,,,由,得,所以的增區(qū)間為,;Ⅱ,,可得,的最大值為5,最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木飾面原材料進口與分銷合同3篇
- 2025年親子遺贈協(xié)議草案
- 2025年代理商代理加盟采購合資合作協(xié)議
- 2025年合資合作收益分配協(xié)議
- 2025年企業(yè)外包勞務(wù)協(xié)議
- 2025年智慧城市物業(yè)管理服務(wù)標準合同范本6篇
- 漫談加強物資管理提高企業(yè)經(jīng)濟效益-圖文
- 《皮質(zhì)醇增多征荊》課件
- 2025年度醫(yī)院病理科診斷服務(wù)承包合同4篇
- 2025年度汽車轉(zhuǎn)讓及二手車交易稅費減免合同
- 廢舊物資買賣合同極簡版
- 2024年正定縣國資產(chǎn)控股運營集團限公司面向社會公開招聘工作人員高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 智能衣服方案
- 李克勤紅日標準粵語注音歌詞
- 教科版六年級下冊科學第一單元《小小工程師》教材分析及全部教案(定稿;共7課時)
- 中藥材產(chǎn)地加工技術(shù)規(guī)程 第1部分:黃草烏
- 危險化學品經(jīng)營單位安全生產(chǎn)考試題庫
- 案例分析:美國紐約高樓防火設(shè)計課件
- 老客戶維護方案
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)一 用戶定位與選題
- 工作證明模板下載免費
評論
0/150
提交評論