2023屆湘贛十四校、等數(shù)學高一上期末預測試題含解析_第1頁
2023屆湘贛十四校、等數(shù)學高一上期末預測試題含解析_第2頁
2023屆湘贛十四校、等數(shù)學高一上期末預測試題含解析_第3頁
2023屆湘贛十四校、等數(shù)學高一上期末預測試題含解析_第4頁
2023屆湘贛十四校、等數(shù)學高一上期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個多面體的三視圖如圖所示,則該多面體的表面積為()A.21+ B.18+C.21 D.182.已知角的終邊與單位圓的交點為,則()A. B.C. D.3.函數(shù)y=ax﹣2+1(a>0且a≠1)的圖象必經(jīng)過點A.(0,1) B.(1,1)C.(2,0) D.(2,2)4.中國5G技術領先世界,5G技術的數(shù)學原理之一便是著名的香農(nóng)公式:.它表示:在受噪聲干擾的信道中,最大信息傳遞速度C取決于信道帶寬W,信道內(nèi)信號的平均功率S,信道內(nèi)部的高斯噪聲功率N的大小,其中叫做信噪比.當信噪比較大時,公式中真數(shù)中的1可以忽略不計.按照香農(nóng)公式,若不改變帶寬W,而將信噪比從1000提升至8000,則C大約增加了()()A.10% B.30%C.60% D.90%5.已知是非零向量且滿足,,則與的夾角是()A. B.C. D.6.已知函數(shù)為偶函數(shù),且在上單調(diào)遞增,,則不等式的解集為()A. B.C. D.7.若集合,則()A. B.C. D.8.形如的函數(shù)因其圖像類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)有最小值,則“囧函數(shù)”與函數(shù)的圖像交點個數(shù)為()A.1 B.2C.4 D.69.今有一組實驗數(shù)據(jù)如下:x23456y1.52.012.985.028.98現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)所滿足的規(guī)律,其中最接近的一個是()A. B.C. D.10.已知,,三點,點使直線,且,則點D的坐標是(

)A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)f(x)=的定義域為R,則實數(shù)a的取值范圍是:_____________.12.已知關于不等式的解集為,則的最小值是___________.13.直線3x+2y+5=0在x軸上的截距為_____.14.函數(shù)的定義域是__________.15.已知函數(shù)是定義在的偶函數(shù),且在區(qū)間上單調(diào)遞減,若實數(shù)滿足,則實數(shù)的取值范圍是__________16.已知冪函數(shù)(為常數(shù))的圖像經(jīng)過點,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓過三個點.(1)求圓的方程;(2)過原點的動直線與圓相交于不同的兩點,求線段的中點的軌跡.18.已知函數(shù)=(1)判斷的奇偶性;(2)求在的值域19.已知函數(shù).求函數(shù)的值域20.設函數(shù)(且)(1)若函數(shù)存在零點,求實數(shù)的最小值;(2)若函數(shù)有兩個零點分別是,且對于任意的時恒成立,求實數(shù)的取值集合.21.已知圓經(jīng)過,兩點,且圓心在直線:上.(Ⅰ)求圓的方程;(Ⅱ)若點在直線:上,過點作圓的一條切線,為切點,求切線長的最小值;(Ⅲ)已知點為,若在直線:上存在定點(不同于點),滿足對于圓上任意一點,都有為一定值,求所有滿足條件點的坐標.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意,該多面體的直觀圖是一個正方體挖去左下角三棱錐和右上角三棱錐,如下圖,則多面體的表面積.故選A.考點:多面體的三視圖與表面積.2、A【解析】利用三角函數(shù)的定義得出和的值,由此可計算出的值.【詳解】由三角函數(shù)的定義得,,因此,.故選:A.【點睛】本題考查三角函數(shù)的定義,考查計算能力,屬于基礎題.3、D【解析】根據(jù)a0=1(a≠0)時恒成立,我們令函數(shù)y=ax﹣2+1解析式中的指數(shù)部分為0,即可得到函數(shù)y=ax﹣2+1(a>0且a≠1)的圖象恒過點的坐標解:∵當X=2時y=ax﹣2+1=2恒成立故函數(shù)y=ax﹣2+1(a>0且a≠1)的圖象必經(jīng)過點(2,2)故選D考點:指數(shù)函數(shù)的單調(diào)性與特殊點4、B【解析】根據(jù)所給公式、及對數(shù)的運算法則代入計算可得;【詳解】解:當時,,當時,,∴,∴約增加了30%.故選:B5、B【解析】利用向量垂直求得,代入夾角公式即可.【詳解】設的夾角為;因為,,所以,則,則故選:B【點睛】向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.6、A【解析】由題可得函數(shù)在上單調(diào)遞減,,且,再利用函數(shù)單調(diào)性即得.【詳解】因為函數(shù)為偶函數(shù)且在上單調(diào)逆增,,所以函數(shù)在上單調(diào)遞減,,且,所以,所以,解得或,即的取值范圍是.故選:A.7、B【解析】集合、與集合之間的關系用或,元素0與集合之間的關系用或,ACD選項都使用錯誤。【詳解】,只有B選項的表示方法是正確的,故選:B?!军c睛】本題考查了元素與集合、集合與集合之間的關系的表示方法,注意集合與集合之間的關系是子集(包含于),元素與集合之間的關系是屬于或不屬于。本題屬于基礎題。8、C【解析】令,根據(jù)函數(shù)有最小值,可得,由此可畫出“囧函數(shù)”與函數(shù)在同一坐標系內(nèi)的圖象,由圖象分析可得結果.【詳解】令,則函數(shù)有最小值∵,∴當函數(shù)是增函數(shù)時,在上有最小值,∴當函數(shù)是減函數(shù)時,在上無最小值,∴.此時“囧函數(shù)”與函數(shù)在同一坐標系內(nèi)的圖象如圖所示,由圖象可知,它們的圖象的交點個數(shù)為4.【點睛】本題考查對數(shù)函數(shù)的性質(zhì)和函數(shù)圖象的應用,考查學生畫圖能力和數(shù)形結合的思想運用,屬中檔題.9、B【解析】根據(jù)表格中的數(shù)據(jù),作出散點圖,結合選項和函數(shù)的單調(diào)性,逐項判定,即可求解.【詳解】根據(jù)表格中的數(shù)據(jù),作出散點圖,如圖所示,根據(jù)散點圖可知,隨著的增大,的值增大,并且增長速度越來越快,結合選項:函數(shù)增長速度越來越緩慢,不符合題意;函數(shù)增長速度越來越快,符合題意;函數(shù),增長速度不變,不符合題意;而函數(shù),當時,可得;當時,可得,此時與真實數(shù)據(jù)誤差較大,所以最接近的一個函數(shù)是.故選:B.10、D【解析】先設點D的坐標,由題中條件,且,建立D點橫縱坐標的方程,解方程即可求出結果.【詳解】設點,則由題意可得:,解得,所以D點坐標為.【點睛】本題主要考查平面向量,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意,有在R上恒成立,則,即可得解.【詳解】若函數(shù)f(x)=的定義域為R,則在R上恒成立,則,解得:,故答案為:.12、【解析】由題知,進而根據(jù)基本不等式求解即可.【詳解】解:因為關于的不等式的解集為,所以是方程的實數(shù)根,所以,因為,所以,當且僅當,即時等號成立,所以的最小值是故答案為:13、【解析】直接令,即可求出【詳解】解:對直線令,得可得直線在軸上截距是,故答案:【點睛】本題主要考查截距的定義,需要熟練掌握,屬于基礎題14、{|且}【解析】根據(jù)函數(shù),由求解.【詳解】因為函數(shù),所以,解得,所以函數(shù)的定義域是{|且},故答案為:{|且}15、【解析】先利用偶函數(shù)的性質(zhì)將不等式化簡為,再利用函數(shù)在上的單調(diào)性即可轉化為,然后求得的范圍.【詳解】因為為R上偶函數(shù),則,所以,所以,即,因為為上的減函數(shù),,所以,解得,所以,的范圍為.【點睛】1.函數(shù)值不等式的求法:(1)利用函數(shù)的奇偶性、特殊點函數(shù)值等性質(zhì)將函數(shù)值不等式轉化為與大小比較的形式:;(2)利用函數(shù)單調(diào)性將轉化為自變量大小比較的形式,再求解不等式即可.

偶函數(shù)的性質(zhì):;奇函數(shù)性質(zhì):;

若在D上為增函數(shù),對于任意,都有;若在D上為減函數(shù),對于任意,都有.16、3【解析】設,依題意有,故.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設圓的方程為,列出方程組,求得的值,即可求得圓的方程;(2)根據(jù)題意得到,得出在以為直徑的圓上,得到以為直徑的圓的方程,再聯(lián)立兩圓的方程組,求得交點坐標,即可得到點的軌跡方程.【小問1詳解】解:設圓的方程為,因為圓過三個點,可得,解得,所以圓的方程為,即.【小問2詳解】解:因為為線段的中點,且,所以在以為直徑的圓上,以為直徑的圓的方程為,聯(lián)立方程組,解得或,所以點的軌跡方程為.18、(1)奇函數(shù)(2)【解析】(1)由奇偶性的定義判斷(2)由對數(shù)函數(shù)性質(zhì)求解【小問1詳解】,則,的定義域為,,故是奇函數(shù)【小問2詳解】,當時,,故,即在的值域為19、【解析】將化為,分和分別應用均值不等式可得答案.【詳解】解:,當時,,當且僅當,即時取等號;當時,,當且僅當,即時取等號綜上所述,的值域為20、(1);(2)【解析】(1)由題意列出不等式組,令,求出對稱軸,若在區(qū)間上有解,則解不等式即可求得k的范圍;(2)由韋達定理計算得,利用指數(shù)函數(shù)單調(diào)性解不等式,化簡得,令,求出函數(shù)在區(qū)間上的值域從而求得m的取值范圍.【詳解】(1)由題意知有解,則有解,①③成立時,②顯然成立,因此令,對稱軸為:當時,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,因此若在區(qū)間上有解,則,解得,又,則,k得最小值為;(2)由題意知是方程的兩根,則,,聯(lián)立解得,解得,所以在定義域內(nèi)單調(diào)遞減,由可得對任意的恒成立,化簡得,令,,對成立,所以在區(qū)間上單調(diào)遞減,,所以【點睛】本題考查函數(shù)與方程,二次函數(shù)的圖像與性質(zhì),考查韋達定理,求解指數(shù)型不等式,導數(shù)證明不等式,屬于較難題.21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根據(jù)題意,設出圓的標準方程,代入條件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小時,垂直于直線,據(jù)此可得結論;(Ⅲ)設,,列出相應等式化簡,再利用點的任意性,列出方程組求解即可.【詳解】(Ⅰ)設圓的方程為,根據(jù)題意有,解得,所以圓的方程為;(Ⅱ)由勾股定理得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論