版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.在Rt△ABC中,∠C=90°,若cosB=,則∠B的度數(shù)是()A.90° B.60° C.45° D.30°2.已知點(3,﹣4)在反比例函數(shù)的圖象上,則下列各點也在該反比例函數(shù)圖象上的是()A.(3,4) B.(﹣3,﹣4) C.(﹣2,6) D.(2,6)3.反比例函數(shù)y=﹣的圖象在()A.第二、四象限 B.第一、三象限 C.第一、二象限 D.第三、四象限4.一個密閉不透明的盒子里有若干個白球,在不許將球倒出來數(shù)的情況下,為了估計白球數(shù),小剛向其中放入了8個黑球,攪勻后從中隨意摸出一個球記下顏色,再把它放回盒中,不斷重復(fù)這一過程,共摸球400次,其中80次摸到黑球,你估計盒中大約有白球(
)A.32個 B.36個 C.40個 D.42個5.如圖,AB是⊙O的弦,∠BAC=30°,BC=2,則⊙O的直徑等于()A.2 B.3 C.4 D.66.1米長的標(biāo)桿直立在水平的地面上,它在陽光下的影長為0.8米;在同一時刻,若某電視塔的影長為100米,則此電視塔的高度應(yīng)是()A.80米 B.85米 C.120米 D.125米7.點P(﹣2,4)關(guān)于坐標(biāo)原點對稱的點的坐標(biāo)為()A.(4,﹣2) B.(﹣4,2) C.(2,4) D.(2,﹣4)8.將拋物線y=x2﹣2向右平移3個單位長度,再向上平移2個單位長度,則所得拋物線的解析式為()A.y=(x+3)2 B.y=(x﹣3)2 C.y=(x+2)2+1 D.y=(x﹣2)2+19.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.10.平行四邊形四個內(nèi)角的角平分線所圍成的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形11.二次函數(shù)的部分圖象如圖所示,有以下結(jié)論:①;②;③;④,其中錯誤結(jié)論的個數(shù)是()A.1 B.2 C.3 D.412.關(guān)于x的一元二次方程有實數(shù)根,則a的取值范圍是A. B. C. D.二、填空題(每題4分,共24分)13.下面是“用三角板畫圓的切線”的畫圖過程.如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.所以直線AD就是過點A的圓的切線.請回答:該畫圖的依據(jù)是______________________________________.14.如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.15.如圖,⊙O的半徑OC=10cm,直線l⊥OC,垂足為H,交⊙O于A,B兩點,AB=16cm,直線l平移____________cm時能與⊙O相切.16.分解因式:a2b﹣b3=.17.若關(guān)于的一元二次方程沒有實數(shù)根,則的取值范圍是__________.18.________.三、解答題(共78分)19.(8分)為了維護國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.(1)求∠APB的度數(shù);(2)已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.20.(8分)如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數(shù)關(guān)系式為h=20t-(t≥0).回答問題:(1)小球的飛行高度能否達到19.5m;(2)小球從最高點到落地需要多少時間?21.(8分)如圖,⊙O是△ABC的外接圓,AB=AC,P是⊙O上一點,請你只用無刻度的直尺,分別畫出圖①和圖②中∠P的平分線.22.(10分)學(xué)生會要舉辦一個校園書畫藝術(shù)展覽會,為國慶獻禮,小華和小剛準備將長AD為400cm,寬AB為130cm的矩形作品四周鑲上彩色紙邊裝飾,如圖所示,兩人在設(shè)計時要求內(nèi)外兩個矩形相似,矩形作品面積是總面積的,他們一致認為上下彩色紙邊要等寬,左右彩色紙邊要等寬,這樣效果最好,請你幫助他們設(shè)計彩色紙邊寬度.23.(10分)天空中有一個靜止的廣告氣球C,從地面A點測得C點的仰角為45°,從地面B測得仰角為60°,已知AB=20米,點C和直線AB在同一鉛垂平面上,求氣球離地面的高度.(結(jié)果精確到0.1米)24.(10分)某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高售價減少銷售量的辦法增加利潤,如果這種商品每件的售價每提高0.5元,其銷售量就減少10件,問:①應(yīng)將每件售價定為多少元,才能使每天的利潤為640元?②店主想要每天獲得最大利潤,請你幫助店主確定商品售價并指出每天的最大利潤W為多少元?25.(12分)如圖,在平面直角坐標(biāo)系中,ΔABC的三個頂點坐標(biāo)分別為A(-2,1)、B(-1,4)、C(-3,2).(1)畫圖:以原點為位似中心,位似比為1:2,在第二象限作出ΔABC的放大后的圖形(2)填空:點C1的坐標(biāo)為,=.26.如圖,,平分,且交于點,平分,且交于點,連接.(1)求證:四邊形是菱形;(2)若,,求的長.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)銳角三角函數(shù)值,即可求出∠B.【詳解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故選:B.【點睛】此題考查的是根據(jù)銳角三角函數(shù)值求角的度數(shù),掌握特殊角的銳角三角函數(shù)值是解決此題的關(guān)鍵.2、C【解析】試題解析:∵反比例函數(shù)圖象過點(3,-4),即k=?12,A.∴此點不在反比例函數(shù)的圖象上,故本選項錯誤;B.∴此點不在反比例函數(shù)的圖象上,故本選項錯誤;C.∴此點在反比例函數(shù)的圖象上,故本選項正確.D.∴此點不在反比例函數(shù)的圖象上,故本選項錯誤;故選C.3、A【解析】根據(jù)反比例函數(shù)y=(k≠0)的圖象,當(dāng)k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減?。划?dāng)k<0時圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大可得:∵k=-2<0,
∴函數(shù)圖象在二、四象限.
故選B.【點睛】反比例函數(shù)y=(k≠0)的圖象:當(dāng)k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減??;當(dāng)k<0時圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大.4、A【分析】可根據(jù)“黑球數(shù)量÷黑白球總數(shù)=黑球所占比例”來列等量關(guān)系式,其中“黑白球總數(shù)=黑球個數(shù)+白球個數(shù)“,“黑球所占比例=隨機摸到的黑球次數(shù)÷總共摸球的次數(shù)”【詳解】設(shè)盒子里有白球x個,
根據(jù)得:解得:x=1.
經(jīng)檢驗得x=1是方程的解.
答:盒中大約有白球1個.
故選;A.【點睛】此題主要考查了利用頻率估計概率,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解,注意分式方程要驗根.5、C【分析】如圖,作直徑BD,連接CD,根據(jù)圓周角定理得到∠D=∠BAC=30°,∠BCD=90°,根據(jù)直角三角形的性質(zhì)解答.【詳解】如圖,作直徑BD,連接CD,∵∠BDC和∠BAC是所對的圓周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直徑,∠BCD是BD所對的圓周角,∴∠BCD=90°,∴BD=2BC=4,故選:C.【點睛】本題考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;半圓(或直徑)所對的圓周角是直角;90°圓周角所對的弦是直徑;熟練掌握圓周角定理是解題關(guān)鍵.6、D【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.解:設(shè)電視塔的高度應(yīng)是x,根據(jù)題意得:=,解得:x=125米.故選D.命題立意:考查利用所學(xué)知識解決實際問題的能力.7、D【解析】根據(jù)關(guān)于原點對稱,則兩點的橫、縱坐標(biāo)都是互為相反數(shù),可得答案.【詳解】點P(﹣2,4)關(guān)于坐標(biāo)原點對稱的點的坐標(biāo)為(2,﹣4),故選D.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于原點對稱,則兩點的橫、縱坐標(biāo)都是互為相反數(shù).8、B【分析】利用二次函數(shù)圖象的平移規(guī)律,左加右減,上加下減,進而得出答案.【詳解】將拋物線y=x2﹣2向右平移3個單位長度,得到平移后解析式為:y=(x﹣3)2﹣2,∴再向上平移2個單位長度所得的拋物線解析式為:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故選:B.【點睛】考核知識點:二次函數(shù)圖象.理解性質(zhì)是關(guān)鍵.9、C【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).10、B【解析】分析:作出圖形,根據(jù)平行四邊形的鄰角互補以及角平分線的定義求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根據(jù)四個角都是直角的四邊形是矩形解答.詳解:∵四邊形ABCD是平行四邊形,
∴∠BAD+∠ABC=180°,
∵AE、BE分別是∠BAD、∠ABC的平分線,
∴∠BAE+∠ABE=∠BAD+∠ABC=90°,
∴∠FEH=90°,
同理可求∠F=90°,∠FGH=90°,∠H=90°,
∴四邊形EFGH是矩形.故選B.點睛:本題考查了矩形的判定,平行四邊形的鄰角互補,角平分線的定義,注意整體思想的利用.11、A【分析】①對稱軸為,得;②函數(shù)圖象與x軸有兩個不同的交點,得;③當(dāng)時,,當(dāng)時,,得;④由對稱性可知時對應(yīng)的y值與時對應(yīng)的y值相等,當(dāng)時【詳解】解:由圖象可知,對稱軸為,,,①正確;∵函數(shù)圖象與x軸有兩個不同的交點,,②正確;當(dāng)時,,當(dāng)時,,③正確;由對稱性可知時對應(yīng)的y值與時對應(yīng)的y值相等,∴當(dāng)時,④錯誤;故選A.【點睛】考查二次函數(shù)的圖象及性質(zhì);熟練掌握從函數(shù)圖象獲取信息,將信息與函數(shù)解析式相結(jié)合解題是關(guān)鍵.12、A【解析】試題分析:根據(jù)一元二次方程的意義,可知a≠0,然后根據(jù)一元二次方程根的判別式,可由有實數(shù)根得△=b2-4ac=1-4a≥0,解得a≤,因此可知a的取值范圍為a≤且a≠0.點睛:此題主要考查了一元二次方程根的判別式,解題關(guān)鍵是根據(jù)一元二次方程根的個數(shù)判斷△=b2-4ac的值即可.注意:當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的十?dāng)?shù)根;當(dāng)△<0時,方程沒有實數(shù)根.二、填空題(每題4分,共24分)13、90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線【詳解】解:利用90°的圓周角所對的弦是直徑可得到AB為直徑,根據(jù)經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過點A的圓的切線.故答案為90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.點睛:本題考查了復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.14、45°【詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.15、4或1【分析】要使直線l與⊙O相切,就要求CH與DH,要求這兩條線段的長只需求OH弦心距,為此連結(jié)OA,由直線l⊥OC,由垂徑定理得AH=BH,在Rt△AOH中,求OH即可.【詳解】連結(jié)OA∵直線l⊥OC,垂足為H,OC為半徑,∴由垂徑定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直線l向左平移4cm時能與⊙O相切或向右平移1cm與⊙O相切.故答案為:4或1.【點睛】本題考查平移直線與與⊙O相切問題,關(guān)鍵是求弦心距OH,會利用垂徑定理解決AH,會用勾股定理求OH,掌握引輔助線,增加已知條件,把問題轉(zhuǎn)化為三角形形中解決.16、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式進行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【詳解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案為b(a+b)(a﹣b).17、【分析】根據(jù)根判別式可得出關(guān)于的一元一次不等式組,解不等式組即可得出結(jié)論.【詳解】由于關(guān)于一元二次方程沒有實數(shù)根,∵,,,∴,解得:.故答案為:.【點睛】本題考查了一元二次方程為常數(shù))的根的判別式.當(dāng)0,方程有兩個不相等的實數(shù)根;當(dāng)0,方程有兩個相等的實數(shù)根;當(dāng)0,方程沒有實數(shù)根.18、【分析】先求特殊角的三角函數(shù)值再計算即可.【詳解】解:原式=×=.
故答案為.【點睛】本題考查的是特殊角的三角函數(shù)值,屬較簡單題目.三、解答題(共78分)19、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【分析】(1)根據(jù)直角的性質(zhì)和三角形的內(nèi)角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形20、(1)19.5m;(2)2s【分析】(1)根據(jù)拋物線解析式,先求出拋物線的定點,判斷小球最高飛行高度,從而判斷能否達到19.5m;(2)根據(jù)定點坐標(biāo)知道,小球飛從地面飛行至最高點需要2s,根據(jù)二次函數(shù)的對稱性,可知從最高落在地面,也需要2s.【詳解】(1)h=20t-由二次函數(shù)可知:拋物線開口向下,且頂點坐標(biāo)為(2,20),可知小球的飛行高度為h=20m>19.5m所以小球的飛行高度能否達到19.5m;(2)根據(jù)拋物線的對稱性可知,小球從最高點落到地面需要的時間與小球從地面上到最高點的時間相等.因為由二次函數(shù)的頂點坐標(biāo)可知當(dāng)t=2s時小球達到最高點,所以小球從最高點到落地需要2s.【點睛】本題考查二次函數(shù)的實際運用,解題關(guān)鍵是將二次函數(shù)轉(zhuǎn)化為頂點式,得出頂點坐標(biāo),然后分析求解.21、見解析.【分析】如圖①中連接PA,根據(jù)等弧所對得圓周角相等,易知∠APB=∠APC,所以PA就是∠BPC的平分線;如圖②中,連接AO延長交⊙O于E,連接PE,由垂徑定理和圓周角定理易知∠EPB=∠EPC.【詳解】如圖①中,連接PA,PA就是∠BPC的平分線.理由:∵AB=AC,∴=,∴∠APB=∠APC.如圖②中,連接AO延長交⊙O于E,連接PE,PE就是∠BPC的平分線.理由:∵AB=AC,∴=,∴=,∴∠EPB=∠EPC.【點睛】本題主要考查圓周角定理和垂徑定理,根據(jù)等弧所對的圓周角相等得到角平分線是關(guān)鍵.22、上下彩色紙邊寬為13cm,左右彩色紙邊寬為1cm.【分析】由內(nèi)外兩個矩形相似可得,設(shè)A′B′=13x,根據(jù)矩形作品面積是總面積的列方程可求出x的值,進而可得答案.【詳解】∵AB=130,AD=10,∴,∵內(nèi)外兩個矩形相似,∴,∴設(shè)A′B′=13x,則A′D′=1x,∵矩形作品面積是總面積的,∴,解得:x=±12,∵x=﹣12<0不合題意,舍去,∴x=12,∴上下彩色紙邊寬為(13x﹣130)÷2=13,左右彩色紙邊寬為(1x﹣10)÷2=1.答:上下彩色紙邊寬為13cm,左右彩色紙邊寬為1cm.【點睛】本題考查相似多邊形的性質(zhì),相似多邊形的對應(yīng)角相等,對應(yīng)邊成比例;根據(jù)相似多邊形的性質(zhì)得出A′B′與A′D′的比是解題關(guān)鍵.23、47.3米【解析】試題分析:過點C作CD⊥AB,交AB于點D;設(shè)AD=x.本題涉及到兩個直角三角形△ADC、△BDC,應(yīng)利用其公共邊CD構(gòu)造等量關(guān)系,解三角形可得AD、BD與x的關(guān)系;借助AB=AD-BD構(gòu)造方程關(guān)系式,進而可求出答案.試題解析:過點C作CD⊥AB,交AB于點D;設(shè)CD=x,在Rt△ADC中,有AD==CD=x,在Rt△BDC中,有BD=x,又有AB=AD-BD=20;即x-x=20,解得:x=10(3+)≈47.3(米).答:氣球離地面的高度CD為47.3米.24、①應(yīng)將每件售價定為12元或1元時,能使每天利潤為640元;②當(dāng)售價定為14元時,獲得最大利潤;最大利潤為720元.【分析】①根據(jù)等量關(guān)系“利潤=(售價﹣進價)×銷量”列出函數(shù)關(guān)系式.②根據(jù)①中的函數(shù)關(guān)系式求得利潤最大值.【詳解】①設(shè)每件售
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:教材插圖智能設(shè)計美學(xué)的社會主義核心價值觀對齊研究
- 課題申報參考:建成環(huán)境對老年人公交及地鐵出行的時空動態(tài)影響及適老化建成環(huán)境優(yōu)化研究
- 二零二五版文化藝術(shù)用品采購合同模板3篇
- 二零二五年度房地產(chǎn)投資定金監(jiān)管協(xié)議4篇
- 二零二五年度煤炭運輸節(jié)能減排協(xié)議4篇
- 二零二五版爐渣清潔生產(chǎn)采購技術(shù)服務(wù)合同4篇
- 2025年度高壓供電線路維護服務(wù)協(xié)議范本3篇
- 2025版?zhèn)€人退股協(xié)議書:上市公司股份回購與股東退出協(xié)議4篇
- 深圳2025年度廠房租賃合同范本2篇
- 二零二五年度建筑安全評估師雇傭合同標(biāo)準版3篇
- 化學(xué)-河南省TOP二十名校2025屆高三調(diào)研考試(三)試題和答案
- 智慧農(nóng)貿(mào)批發(fā)市場平臺規(guī)劃建設(shè)方案
- 林下野雞養(yǎng)殖建設(shè)項目可行性研究報告
- 2023年水利部黃河水利委員會招聘考試真題
- Python編程基礎(chǔ)(項目式微課版)教案22
- 01J925-1壓型鋼板、夾芯板屋面及墻體建筑構(gòu)造
- 欠電費合同范本
- 《學(xué)習(xí)教育重要論述》考試復(fù)習(xí)題庫(共250余題)
- 網(wǎng)易云音樂用戶情感畫像研究
- 小學(xué)四年級奧數(shù)題平均數(shù)問題習(xí)題及答案
- 工作違紀違規(guī)檢討書范文
評論
0/150
提交評論