版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某地區(qū)教育主管部門為了對(duì)該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績(jī),并根據(jù)這2000名學(xué)生的成績(jī)畫出樣本的頻率分布直方圖,如圖所示,則成績(jī)?cè)?,?nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16002.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.13.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.4.已知斜率為2的直線l過(guò)拋物線C:的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn),若線段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.45.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.546.設(shè)集合,集合,則=()A. B. C. D.R7.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線近似為,則;④若某國(guó)家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④8.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.9.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.10.設(shè)是虛數(shù)單位,則()A. B. C. D.11.已知角的終邊經(jīng)過(guò)點(diǎn),則的值是A.1或 B.或 C.1或 D.或12.已知,,若,則向量在向量方向的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.14.設(shè)全集,,,則______.15.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為_(kāi)_______.16.已知,,且,則最小值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.18.(12分)設(shè)數(shù)列,的各項(xiàng)都是正數(shù),為數(shù)列的前n項(xiàng)和,且對(duì)任意,都有,,,(e是自然對(duì)數(shù)的底數(shù)).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.19.(12分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).(1)證明:點(diǎn)在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點(diǎn).若與的面積相等,求直線的斜率20.(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時(shí),點(diǎn)構(gòu)成曲線,證明:過(guò)原點(diǎn)的任意直線與曲線有且僅有一個(gè)公共點(diǎn).22.(10分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點(diǎn),且點(diǎn)的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由圖可列方程算得a,然后求出成績(jī)?cè)趦?nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績(jī)?cè)趦?nèi)的頻率,所以成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.2、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡(jiǎn)單題.3、A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.4、C【解析】
設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點(diǎn)睛】本題主要考查了直線與拋物線的相交弦問(wèn)題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.5、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.6、D【解析】試題分析:由題,,,選D考點(diǎn):集合的運(yùn)算7、A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)?,所以,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.8、D【解析】
根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.9、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.10、A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.12、B【解析】
由,,,再由向量在向量方向的投影為化簡(jiǎn)運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點(diǎn)睛】本題主要考查了體積類的幾何概型問(wèn)題,屬于基礎(chǔ)題.14、【解析】
先求出集合,,然后根據(jù)交集、補(bǔ)集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.【點(diǎn)睛】本題主要考查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.15、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】
首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【詳解】,結(jié)合可知原式,且,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.即最小值為.【點(diǎn)睛】在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)?,所以平?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過(guò)作的垂線段,在所有的垂線段中長(zhǎng)度最大的為,此時(shí)必過(guò)的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.18、(1),(2)【解析】
(1)當(dāng)時(shí),,與作差可得,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,即可求解;對(duì)取自然對(duì)數(shù),則,即是以1為首項(xiàng),以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯(cuò)位相減法求解即可.【詳解】解:(1)因?yàn)?,①當(dāng)時(shí),,解得;當(dāng)時(shí),有,②由①②得,,又,所以,即數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,故,又因?yàn)?且,取自然對(duì)數(shù)得,所以,又因?yàn)?所以是以1為首項(xiàng),以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查錯(cuò)位相減法求數(shù)列的和.19、(1)證明見(jiàn)解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點(diǎn)的橫坐標(biāo)即可證出;(2)根據(jù)線段的垂直平分線求出點(diǎn)的坐標(biāo),即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設(shè),,聯(lián)立消去,得,顯然,,則點(diǎn)的橫坐標(biāo),因?yàn)?,所以點(diǎn)在軸的右側(cè).(2)由(1)得點(diǎn)的縱坐標(biāo).即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因?yàn)榕c的面積相等,所以,解得.所以當(dāng)與的面積相等時(shí),直線的斜率.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系的應(yīng)用、根與系數(shù)的關(guān)系應(yīng)用,以及三角形的面積的計(jì)算,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.20、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個(gè)人命中,3-ξ個(gè)人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學(xué)期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21、(1);(2)證明見(jiàn)解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對(duì)任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點(diǎn),即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時(shí),;時(shí),,即時(shí),;時(shí),,時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,時(shí),取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點(diǎn),則,,,曲線的方程為.故只需證明對(duì)任意,方程有唯一解.令,則,①當(dāng)時(shí),恒成立,在上單調(diào)遞增.,,,存在滿足時(shí),使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時(shí),二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時(shí),二次函數(shù),滿足,此時(shí)有兩個(gè)不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,當(dāng)時(shí),的極大值為.,,,,,..下面來(lái)證明,構(gòu)造函數(shù),則,當(dāng)時(shí),,此時(shí)單調(diào)遞增,,時(shí),,,故成立.,存在,使得.又在單調(diào)遞增,為唯一解.所以,對(duì)任意,方程有唯一解,即過(guò)原點(diǎn)任意的直線與曲線有且僅有一個(gè)公共點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,考查不等式恒成立問(wèn)題,考查利用單調(diào)性研
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 李小華競(jìng)聘練習(xí)測(cè)試題附答案
- 國(guó)旗下的講話稿考試
- 辦公室主任個(gè)人思想工作總結(jié)
- 導(dǎo)游帶團(tuán)勞動(dòng)合同范例
- 義診合作合同范例
- 工地清包工外架合同范例
- 安裝鋁合金護(hù)欄合同模板
- 小區(qū)投放充電樁合同范例
- 辦公標(biāo)簽銷售合同范例范例
- 建筑材料居間協(xié)議合同模板
- 人教版小學(xué)五年級(jí)英語(yǔ)上冊(cè)第一、二、三單元復(fù)習(xí)Recycle教案
- 常用鋼材牌號(hào)及化學(xué)成分表
- 高大墻體混凝土澆筑技術(shù)交底(非常詳細(xì))
- 建設(shè)項(xiàng)目全過(guò)程工程咨詢管理實(shí)施規(guī)劃
- 現(xiàn)代控制理論課后習(xí)題答案
- 地方應(yīng)用型高校新工科專業(yè)建設(shè)面臨的問(wèn)題與對(duì)策
- 水平定向鉆施工方案
- 金華市地方課程《錦繡金華》八年級(jí)教案
- 雷諾現(xiàn)象及雷諾氏病PPT課件
- 碼頭報(bào)批流程圖
- IE 標(biāo)準(zhǔn)工時(shí)(完整版)
評(píng)論
0/150
提交評(píng)論