路基寬度26米行車道寬43.75公路一級四車道高速公路說明書、土方計算表cad圖-翻譯原文_第1頁
路基寬度26米行車道寬43.75公路一級四車道高速公路說明書、土方計算表cad圖-翻譯原文_第2頁
路基寬度26米行車道寬43.75公路一級四車道高速公路說明書、土方計算表cad圖-翻譯原文_第3頁
路基寬度26米行車道寬43.75公路一級四車道高速公路說明書、土方計算表cad圖-翻譯原文_第4頁
路基寬度26米行車道寬43.75公路一級四車道高速公路說明書、土方計算表cad圖-翻譯原文_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Low-temperaturefailurebehaviorofbituminousbindersandmixesAresearchincludingalargeexperimentalnonthermo-mechanicalbehaviorofdifferentbituminousmaterialsinthelargestrainamplitudeisproposed.Theprimarygoalofthispristoidentifyanddeterminethelinksbetweenthefailurepropertiesofbituminousbindersandthoseofmixesatlowtemperatures.Thethermo-mechanicalbehaviorofbituminousbinderswasevaluatedwiththetensilestrength onstantstrainrateandconstanttemperatures.Thethermo-mechanicalbehaviorofbituminousmixeshasbeenstudiedbyperformingmeasurementsofthecoefficientofthermaldilatationandcontraction,tensiletestsatconstanttemperaturesandstrainrates,andThermalStressRestrainedSpecimenTests.Somepertinentlinksbetweenfundamentalpropertiesofbindersandmixesareestablished.Someregardtothelow-temperaturefailurepropertiesofbituminousmixesareKeywords:bitumens,bituminousmixes,rheologicalbehavior,thermo-mechanicalproperties,failureproperties,tensilestrength,TSRST,lowtemperature,brittle,ductile,brittle/ductileThedifferentsofbitumenbehaviorcanbeillustratedaccordingtothestrainamplitude(_ε_)andthetemperature(T),atagivenstrainrate.FIGURE1(drawnfrom(1)and(2))pointsoutthebrittleandductiles,wherethetensilestrengthσpcanbethebrittlefailure,whichcouldbecharacterizedbythefracturetoughnessKc(LinearElasticFracturethelinearelasticbehavior,characterizedbythemoduliEandthelinearviscoelastic,characterizedbythecomplexmoduliE*andthepurelyviscous(Newtonian)behavior,characterizedbytheviscosityforstrainsofafewpercent,thewherethebehaviorishighlynon-Abituminousmixhasalsoacomplextemperature-sensitivebehavior.Itsresponsetoagivenloadingisstronglydependentontemperatureandloadingpath.Inaddition,atagiventemperatureandagivenstrainrate,fourmaintypicalbehaviorscanbeidentifiedaccordingtothestrainamplitude(ε)andthenumberofappliedcyclicloadings(N)(seeFIGURE2,from(3)).Thisp risaimedatprovidinganassessmentoftheworkconductedtodatewithintheframeworkofapartnershipbetweenthe“DépartementGénieCiviletBatiment”oftheEcoleNationaledesTPE,AppiaandEurovia.Thisstudyfocusedonthethermo-mechanicalbehaviorofdifferentbituminousmaterialsinboththesmallstrainandthelargestrain,atlowandmidtemperatures,whenconsideringonlyasmallnumberofloadingsThisp ronlydealswiththecharacterizationofthefailureproperties(helargestrainamplitude)ofbituminousmaterials,atlowandmidtemperatures.Itmaybeunderlinedthatthis rcompletestwopreviousp rswhichfocusedonthelinearviscoelasticbehaviorofbituminousmaterials(hesmallstrain)atlowandintermediatetemperatures(2)and(4).Fourverydifferentbitumenshavebeentested:twopurebitumens(10/20and50/70penetrationgrade),andtwopolymermodifiedbitumenswithahighcontentofpolymer,onewithplastomerandonewithelastomer.Thepolymermodifiedarenamed PMB1andPMB2.TABLE1presentstheresults conventionaltests(theFraassbrittlepoint,thePenetrationat25°CandtheSofteningPointRingandBall)initiallyperformedonthedifferentbinders.Fourdifferentbituminousmixes,madefromthe10/20,50/70,PMB1andPMB2bitumenswithonetypeof aggregateandgrading,havebeentested.Themixturesampleshadacontinuous0/10mmdioritegrading,a3±1%voidcontentandabindercontentof6%bydryweightofaggregate.TESTSONSHRPDirectTensileTestsAsdescribedinAASHTOTP3and(5),theSHRPDirectTensileTestconsistsinelongating27mmhigh samplesat1mm/minandatconstanttemperatures.Thecorrespondingstrainrate(?)equals2.22m/m/h.Atleastsix repeatsateachtemperaturewererealizedonunagedsamples.Apartfromthedeterminationoftheconventionaltemperatureleadingtofailureat1%strain,Tε=1%,ourysisalsoconsistsincharacterizingathresholdtemperatureseparatingthebrittlebehaviorandtheductileone.Moreover,thetensilestrength (umtensilestress) andthecorrespondingstrainforeachtemperatureareconsideredandrepresentedinFIGUREInouropinion,therankingofbindersinfunctionoftheirstraintoleranceusingtheparameterTε=1%doesnotseemtobereallypertinentinthesensethatthisapproachisratherempirical.Thisparameterwill comparedwithanewconceptofbrittle/ductiletransitiontemperatureofbinders,whichisintroducedatthestudiedstrainrate.Thedeterminationofthisbrittle/ductiletransitiontemperatureofbindersisexplainedinthenextparagraphs.Anyisothermaldirecttensiletestyieldsmuoredatathanjustfailurestrainorstressvalues.In particular,the ortheductile-likesh ofthestress-straincurvecanbeexaminedateachtemperature.Athightemperatures,bindershaveapurelyductilebehavior,whereasatverylowtemperaturestheirbehaviorispurelyfragile.Followingtheconsideredtemperature,thebitumenbehaviorsweepsfromductile(hightemperature)tobrittle(lowtemperature).Nevertheless,atintermediatetemperatures,thereisaslowevolutionofthebehaviorfromaductileonetoabrittleonewhendecreasingthetemperature.Thus,practically,thereisnodetermininganaccuratetransitiontemperaturedirectlyfromtheexaminationofthe ofthestress-straincurve.Inthebestcase,itisjustpossibletodetermineamoreorlesswidetemperaturerangewhichcorrespondstothisslowtransitionofthephysicalpropertiesofbinders.Fromourresults,weintroduceabrittle/ductiletransitiontemperatureofbindersatthestudiedstrainrate,Tbdb,whichisthetemperatureatwhichthetensilestrengthpeaksintheaxestensilestrength-temperature(FIGURE3).ThismakesthedeterminationofTbdbeasierandmoreaccuratesincetheumofthetensilestrengthmaybeclearlyidentified.Kingetal.(5)havealreadynoticedthatwhenthetemperaturedropsbelowabout-15°C,thetensilestrengthofbituminousmixturesdecreasesandthetensilespecimenfracturesatlowstrainasabrittlefailure.Thebrittle/ductiletransitiontemperature,hereafternamedTbdb(forastrainrateof2.22m/m/h),canbe consideredas handyand low-temperatureparameter.Itsphysicalmeaningisdirectlylinkedtothetypeoffractureprocessofspecimens,whichinfluencesthesh ofthestress-straincurves.ThevaluesofTbdbarepresentedinTABLE1alongwiththetemperaturecorrespondingtoastrainof1%atfailure,Tε=1%.TbdbandTε=1%arehighlycorrelatedwitheachother(r2=0.977).Nevertheless,furtherinvestigationsonotherbituminousbindersarestillneededbeforeanydefinitiveconclusioncanbeAsshowninFIGURE3,thefailurestressresultsarenoticeablyscatteredatlowtemperatures,wherethebehaviorisbrittle.However,theperformanceofsuchatestatintermediateandhightemperaturesleadstoaminorscatterofresults.Therefore,fromourresultsonfourverydifferentbinders,theumtensilestress(tensilestrength)seemstobeallthemorerepeatablethanthetemperatureishigh(FIGURE3).AsassumedbyLargeaudetal.(7),thescatteringatlowtemperaturecouldbeexplainedbythedetrimentalinfluenceofocclusionsofairbubblesinthesmallsectionofbinderTESTSONDirectTensileTestsDTTresultsonThesetestswereperformedatconstanttemperaturesbetween5°Cto-46°Catconstantstrainrate.Twoverydifferentstrainrates(300and45000μm/m/h)werechosensoastostudytheinfluenceofstrainrateuponthefailurepropertiesofbituminousmixtures.220mmhighcylindrical(diameter=80mm)samplesweretestedintensionusingaservo-hydraulicpressattheEurovialaboratory.Thestraininthesamplewasconsideredasthemeanvalueofthemeasuresgivenbythreetransducersplacedat120°aroundthesample.TwoorthreetestreplicateswereperformedateachOnonehand,aspreviouslyshownbyDiBenedettoetal.(8)(9),theexperimentalresultsonthefourstudiedbituminousmixturesevidencethatthestressatfailure(viscoplasticflaw)ishighlydependentonthestrainrateintheductile(hightemperature).Ontheotherhand,theobtainedstressatfailureonlyslightlydependsuponthestrainrateinthebrittle(lowtemperature).So,asaapproximation,thetensilestrengthinthebrittlecanbeconsideredasindependentofthechosenstrainrate.Thispointisofprimaryimportancesinceahighstrainratecanbeusedinthebrittleinordertosavetime.Nevertheless,itisnoteworthythatStockandArand(10)previouslystatedthatinthebrittle,atverylowtemperatures,thetensilestrengthslightlydecreaseswhileincreasingthestrainrate. needstobedeepened furtherinvestigation.Furthermore,inreferencetothetransitiontemperatureconceptpresentedforbinders,weintroducedthebrittle/ductiletransitiontemperatureofbituminousmixes,Tfdm,whichdependsontheappliedstrainrate().The differenceforthetwoconsideredstrainrates(300and45000μm/m/h)canreach9°C.Thislow-temperatureparameterisreportedinTABLE1forthetwoconsideredstrainrates.AsillustratedinFIGURE4whereallreplicateresultsareplotted,thescatterofresultsisrathersmallwhateverthestrainrateandthetemperature.Therepeatabilityofsuchatestonmixesappearsasespeciallygood,aswellinthefragileasintheductile.FIGURE5sumsuptheinfluenceofboththetemperatureandthestrainrateonthebrittle/ductilebehaviorfortensiletestsatconstantstrainrateonbindersandDTTonbindersVsDTTonAscanbeseeninFIGURE6,thetensilestrengthofbindersfoundwiththeSHRPDirectTensileTestsat1mm/min(2.22m/m/h)isquiteclosetothetensilestrengthofmixesat300μm/m/h.Thispointisnoticeableandneedsfurtherinvestigation.Indeed,astestingbituminousmixturesisveryexpensiveandtime-consuming,oneofthecurrentgreatissuesistodeterminemethodsinwhichthepropertiesofmixescouldbeevaluatedwithenoughaccuracyfromthepropertiesofthebinderandfromthemixcomposition.Toconfirmtheseresults,nextstepscouldconsistintestinganotherstrainrateforbinders(150mm/min,i.e.333m/m/h,ifpossible)andalsodifferentmixcompositions.Inaddition,inthebrittleatverylowtemperatures,andonlyasaapproximation(lackofrepeatability),thepreviousobservations(cf.FIGURE6)allowtoconsiderthatthetensilestrengthofbindersequalsthetensilestrengthofmixeswhichdoesnotdependonthestrainrate(FIGURE4).Toourknowledge,thisstatementwhichissometimessupposedtobevalidhasbeenbutlittleexperimentallychecked.Moreover,thisstatementisoftheutmostimportancesincethefailureinmixescouldbepredicted,asaapproximation,fromthefailureinbinders.Forinstance,asregardsthecurrent revisionofthe AASHTOlow specificationMP1(MP1A),thefailurestressfromDTTonbindersisincorporatedinacomprehensivemodeltocalculateandpredictthesocalledcriticalcrackingtemperatureofpavement(11)(12).Coefficientofthermaldilatation/contractionofThelinearcoefficientofthermaldilatation/contraction“α”dependsonthethermalcharacteristicsofthecomponentsofthebituminousmixture(binder,aggregateandair).Itespeciallyhighlydependsonthebindercontentsincethecoefficientoflinearthermaldilatation/contractionofbitumenissome30timesgreaterthanthatofthemineralaggregate(13)(14)(15).Inourstudy,asonlyonemixdesignisconsidered,theinfluenceoftheamountofbinderandaggregatecannotbeParallelepipedicasphaltsamples(L*W*H=16*4*4cm3)ofthefourtypesofinvestigatedmixeswerelaidontheirlengthonalayerofsmallglassmarblescoatedwithasiliconespray.Thisbaseprovidesnearlyfrictionlessmovement.Eachsamplewassubmittedtodifferentplateausoftemperatureintherangeof+24to–26°C.Thetemperaturewasheldconstantforaboutthree-hourperiodsaftereachincrementofaroundthreedegreesCelsius.Twoidenticalstraingagesareusedforeachtest:theoneisgluedontheupperpartoftheasphaltbeam,thesecondoneonthelowerpart,fornottakingintoaccounttheflexionofthebeamduringthetest.Theaveragevalueisconsidered.Athirdstraingagewasgluedonareferencetitaniumsilicatebeam,ofknownα-value(0.03μm/m/°C),inordertoaccountforandcorrecttheeffectoftemperature.Inaddition,atemperatureprobewasusedtomeasurethetemperatureatthesurfaceofasphaltsamples.Thethermalstrainεcanbewrittenasfollowsε=α?Twhereα:linearcoefficientofthermaldilatation/contraction?T:changeintemperatureThermalAftereachtemperaturechange,thetemperatureisheldconstantduring3hourssoastoallowthespecimen,thetitaniumsilicatebeamandthethreestraingagestoequilibrateattheconsideredtemperature.Attheonsetofthisplateauoftemperature,atransitionalperiodisobserved,inwhicheachelementiscontracting(ordilating)untilthermalequilibrium.Thetransitionalperiodofeachelementdependsi)onitsdimensions(thestraingagereachesmorequicklythethermalequilibriumthanthemixsample),ii)onitsthermo-physicalcoefficients,iii)onthetemperaturechangeamplitude,iv)etc.Fromourresults,thistransitionalperiodlastsabout1hour.ExperimentalFIGURE7showsthatthethermaldilatationcoefficientofmixesandtheirthermalcontractioncoefficientarereallyclose(seealso(16)).Thetwocoefficientsarehereafterconsideredasequal.Moreover,FIGURE7highlightsthatthefourdifferentmixeshaveveryclosethermalcontractioncoefficientsovertheconsideredrangeoftemperature(from-26to+24°C).AsDiBenedettoandNeifar(16),usingaspeciallydesignedtestmethod,andSerfassetal.(17)havealreadyshown,alinearrelationshipbetweenthethermalcontractioncoefficientandthetemperaturecanbeconsidered,asaapproximation,below5°C.Thesecoefficientsvaryslowlyfromaround30to15μm/m/°Cwhiledecreasingtemperaturefrom5°to–26°C.ThethermalcontractioncoefficientappearsasnearlyconstantattemperaturesabovebuttheexcessivecreepofthesamplemakesthemeasurementsTheenvironmentalchamberdidnotallowtoinvestigatetemperatureslowerthan–26°Csothatnoglasstransitionpoint(changeintheslopeofα-Tcurve)couldhavebeenidentifiedfromourresults.ItisnoteworthythatDiBenedetto&Neifar(16)previouslypointedouttheanisotropicbehaviorofmixes.Theymeasuredoncylindricalsamplesthecoefficientsofbothradialandaxialthermalcontraction.Theselatterwerefoundtobedifferent(30to50%).ThermalStressRestrainedSpecimenTestsTypically,restrainedcoolingtests(orTSRST)areconsideredasanacceleratedperformancetesttopredictlowtemperaturecrackingofbituminousmixtures.Thesetestswerecarriedout oolingrateof10°C/hfromaninitialtemperatureof5°Cusingaservo-hydraulicpressattheEurovialaboratoryandwereruninduplicateortriplicateon250mmhighsamples(diameter=60mm).Atemperatureprobewasusedtomeasurethetemperatureatthesurfaceofasphaltsamples.Thethermalregulationisdirectlyrealizedfromthemeasuredsurfacetemperature.Theairintheenvironmentalchamberiscirculatedwithafansothatthetemperaturedistributionisuniform.Thestraininthesamplewasconsideredasthemeanvalueofthevaluesgivenbythreetransducersplacedat120°aroundthesample.Thisstrainεiskeptequaltozeroduringthewholetest.Asthematerialisrestrained,itstendencytoshortenresultsinthedevelopmentofatensilestressthatproducesfailure.Thestrainεcanbemodeledasthesumofa“thermal”strainanda“mechanical”strain: :mechanicalstrain,describedbytheDBNviscoplasticmodel(24-25)(notdevelopedinthisp :thermalstrainwhichisequaltoα.?Τ(cf.equationMoreover,asthecoefficientsofthermalcontractionofthefourmixesvaryfrom30to15μm/m/°Cwhenthetemperaturedropsfrom5°to-30°C(FIGURE8),theequivalentmechanicalstrainrate( )rangesfrom300to150μm/m/hduringtherestrainedcoolingtests(sinceε=0).ItisnoteworthythataluminumcapswereusedtofixsamplestotheMTShydraulicpressinordertoavoidexcessiveshearstressesatthetopandatthebottomofsamples.Thestandardvalueofthecoefficientofthermalcontractionofaluminumisaround23μm/m/°C,whichisclosetothatofmixesovertheconsideredrangeoftemperatures.Fromourresults,failureoccursinthebrittlewhentheinducedthermalstressequalsthetensilestrengthobtainedat300μm/m/h(FIGURE8).Thismeansthatthestrengthofthebituminousmixesseemstobeafunctionofthetemperature(18)andthestrainrateonly,anddoesnotdependuponthepreviousfollowedstressandtemperaturepaths.Moreover,totheextentthatthetensilestrengthonlyslightlydependsonthestrainrateinthefragile(FIGURE4),itseemspossibletoforecastthethermalcrackinginthebrittlebymeansofthetensilestrengthcurveobtainedatanystrainrate.Thetemperaturewhichcorrespondstofailure,theso-calledfracturetemperatureTTSRST,isgiveninTABLE1.Forequivalentchangesintemperature,thelowerthethermallyinducedtensilestress,thebetterthemixbehavior.Likewise,thecoldertheTSRSTfracturetemperature,thegreaterthemix tolow-temperaturecracking.Therefore,amongthefourconsideredbituminousmixes,thetwopolymermodifiedmixturesarethebestregardingtheirtolow-temperaturecracking.Moreover,theperformancerankingofthefourconsideredmixtureswhichweremadefromthesamemixdesignandfourdifferentbindersisverydiscriminating.Thus,fortheconsideredmixdesign,thisconfirmsthatthebitumenpropertyappearsasakeyfactorregardingthe tolow-temperaturecrackingofbituminousmixes.TheinfluenceofthecoolingratehasnotbeenstudiedduringthislaboratoryMixturesthermalcrackinghasbeenmeasuredunderverysevereconditions(-10°C/h).Itisofparticularinteresttonotethatmorerealisticpavementsurfacecoolingratesaregenerallyintherangefrom0.5to2°C/h(19)(20).Amidresultsdrawnfromtheliterature,Fabb(21)previouslyshowedthatthecoolingratehaslittleeffectonthefracturetemperatureandthefracturestrengthwhentheratewasgreaterthan5°C/h.FromtheresultsofJungandVinson(22)(23),whenconsideringcoolingratesof1°C/hand10°C/h,therelativedifferencebetweentheamplitudesofinducedthermalstressescanreach100%nearthefracturetemperature.Typically,TTSRSTiscoldestat1°C/h,whichcanbeeasilysimulatedbythe“DBN”law(27).Notwithstandingthisfact,therankingofbituminousmaterialsdoesnotseemtobeinfluencedbythechosencoolingrate.Therefore,theTSRSTwithcoolingrateof10°C/hcanprovideratherquicklypertinentinformationregardingtothelow-temperaturecrackingpropertiesofbituminousEventually,thethermallyinducedstressofthegivenmixesmayalsohavebeenpredictedusingthelawdescribedbyDiBenedettoetal.(24-26)andNeifaretal.(27-28).Thepredictionisgivenbyteralviscoplastic“DBNlaw”(DiBenedettoandNeifar)usingtheresultsofi)complexmodulusii)thetensilestrengthofandiii)theknowledgeofthethermalcontractioncoefficient.Thisprocedureconsists yeffectivealternativetothewidesprerocedureswhicharebasedonlyonthelinearviscoelasticpropertiesofthesematerials.TheinfluenceofnonlinearitiesforthepredictionoftheTSRSThasbeenpreviouslyevidencedwiththeDBNlaw(25)(28).Then,thecrackingtemperaturecanbedeterminedfromtheintersectionofthecoolingandtensilestrengthcurves(27-28).Formoredetails,thereaderisreferredtothefollowingreferencesThemixturestothermalcyclesremainstobetestedsooninacomplementarystudyor,alternatively,canbetheoreticallypredictedbymeansofthe“DBNlaw”forFindingthattherankingsmixturesregardingtoeitherlow-temperaturecrackingorcyclicthermalaresimilarcouldbeinparticularofgreatYSIS–TheparametersTε=1%,Tbdb,Tbdm(300μm/m/h),Tbdm(45000μm/m/h)andthefailuretemperatureattheTSRST,namedTTSRST,arepresentedinTABLE1forthefourstudiedbituminousTABLE2gathersthecoefficientsbetweenallthepreviouslyintroduced,TbdbandTε=1%arehighlycorrelatedwitheachother(r2=0.977).OnemustbearinmindthatthephysicalmeaningoftheintroducedTbdbisdirectlylinkedtothetypeoffractureprocessofspecimens,whichinfluencesthesh ofthestress-straincurves.Thatiswhythispertinentparametercouldbeassociatedtothecurrentlow-temperaturespecificationforasphaltbindersbaseduptonowonTε=1%.Second,fortheconsideredmixdesign,Tbdm(300μm/m/h)andTbdm(45000μm/m/h)exhibitprettygoodcorrelationwithTbdb(resp.r2=0.936and0.908)andTε=1%(resp.r2=0.929and0.925).Moreover,thecorrelationbetweenTbdbandTTSRSTisr2=0.992.Thisevidencesthat,atlowtemperatures,thefailurepropertiesofbituminousmixturescanbepredictedfromthoseofThesecorrelationcoefficientsbetweenmixesandbinderspropertiesstillneedtobeconfirmedbyadditionaltestswithotherbindersandespeciallyothermixFortheconsideredsetofbinders,theSofteningPointRingandBallandtheFraassBrittlePointarenotgoodindicatorsofthelow-temperaturecrackingpropertiesofbituminousIndeed,thecoefficientsofthesetwotraditionalparameterswithTε=1%,Tbdb,Tbdm(300μm/m/h),Tbdm(45000μm/m/h)andTTSRSTarenotgood.Eventually,thecorrelationcoefficientsofthePenetrationat25°CwithTε=1%,Tbdb,Tbdm(300μm/m/h),Tbdm(45000μm/m/h)andTTSRSTappearasnotsogood.Indeed,asfarastheauthorsknow,intheliterature,excepttheresultsofJungandVinson(23)(29)thatevidencedprettygoodcorrelationbetweenTTSRSTandthePenetrationat15°C,poorcorrelationisusuallyemphasizedFinally,asthePenetrationat25°C,theSofteningPointRingandBallandtheFraassBrittlePointareconcerned,theseconventionaltestsdonotbringrelevantinformationnordotheyprovideaveryaccuraterankingregardingtothefailurebehaviorofthebituminousmaterialsatlowtemperatures.Let’saddthatthePenetrationat25°CandtheSofteningPointRingandBallarenotwellcorrelatedwiththelow-temperaturecriterionssince,obviously,theyarenotassociatedwiththesameoftemperature.Arationalapproachwhichconsistsincomparingthepropertiesofbindersandmixesonlyinthesameofbehavior(thelargestrainuptofailure)hasbeenconsideredinthisp r.Fromourresults,thefollowingconclusionscanbedrawn:Anewwayofdeterminingthebrittle/ductiletransitiontemperaturerelatedtothepeakofthetensilestrength/temperatureresponsecurve(atagivenstrainrate)isproposed.Thismakesthedeterminationofsuchatransitionaltemperatureeasierandmoreaccurate.Fortheconsideredsetofbinders,thetensiletestsonbindersandmixesrankthematerialsinthesamemannerregardingtherate-dependentbrittle/ductiletransitiontemperaturesofbindersandmixes.Asaapproximation,thetensilestrengthofmixescanbeconsideredasindependentofthestrainrateinthebrittle(atverylowtemperatures).Thispointisofprimaryimportancesinceahighstrainratecanbeusedinthebrittlesoastosavetime.Onlyasaroughapproximation,inthebrittle(atverylowtemperatures),thetensilestrengthofbindersandmixescanbeconsideredasclose.Thispointneedsfurtherinvestigation.Anexpandedlaboratorytestingprogramis mendedtofurtherexploretheeffectsofstrainrateandmixdesignonthetensilestrengthofbituminousbindersandParameterssuchasi)thetemperatureleadingtofailureat1%strainattheSHRPtensiletestsonbinders,ii)andiii)thefragile/ductiletransitiontemperaturesofbindersandmixes(fivenstrainrates)andiv)thefailuretemperatureobtainedattheTSRSTtestshavebeendeterminedforea aterial.Ithasbeenshownthattheselow-temperatureparameterswellcorrelatewitheachother.Thisseriesofparametersranksinthesamemannerthebituminousmaterialsregardingtotheirlow-temperatureproperties.ThatmeansthatthesefourparameterscanbegoodsurrogatestoeachConcerningtherelevancyofthetraditionalparameters(thePenetrationat25°C,theSofteningPointRingandBallandtheFraassBrittlePoint),asmanyotherauthorshavepreviouslystated,badcorrelationbetweenthelatterparametersandmorerationalcharacteristicshavebeenfoundherein.瀝青和瀝青混合料的低溫破壞性本文是對含有不同添加劑材料的瀝青熱力行為在大應變情況下的對比實驗建立起基本成分性狀和混合物的特性間的關系以得出瀝青混合料低溫破壞的一些明顯的特征。關鍵字:瀝青,含摻合劑的瀝青混合料,流動行為,熱力學特性,破壞,拉應力,TSRST,低溫,脆性,延性,脆、延性隨溫度的改變。緒述。從圖1(從(1)和(2)得出)可以看出:知道了拉伸應力σpKc來表示;線彈性的破壞性質,用模量E和G線性兼具黏彈性的破壞性質,用復雜模量E*G*,來表示;純黏性(體)的破壞性質,用黏著系數(shù)η來表示;瀝青混合料也對溫度復雜的敏感性。給定的荷載的反應與溫度和加載過程有關。除此之外,對給定的溫度和給定的應變率,四種主要的典型破壞ε)和重復加載次數(shù)來表示。(見到圖2,表(3))本文旨在為“DépartementGénieCiviletBatiment”oftheEcoleNationaledesAppiaandEurovia瀝青材料的熱力學行為本文只廣義大應變下的在較低溫度和正常溫度間化的瀝青混合料的破壞性能。在早先的兩篇中了(2)號和(4)號試件在小應變條件下從較低溫度向中間溫度變化時的線黏彈性破壞。實驗材現(xiàn)在四種有顯著差別的瀝青已經(jīng)被測試:二種純?yōu)r青(針入度分別為10/2050/70),PMB1PMB2的改性瀝青混合料(一種添加的合劑的瀝青混合料試件(10/20,50/70,PMB1,PMB2,它們包含有0/10米間的連續(xù)級配的閃綠巖,31%的空隙率,6%的添加劑。結合料SHRP接拉伸測試按照AASHTOTP3和TP(5)的試驗規(guī)程,做了SHRP直接拉伸測試(DTT),在恒定溫度下以1毫米/分鐘的速度將瀝青混合料試件拉長272.22m/m/h。每個未老化的試件在一個溫度點上至少重復測試六次,除了傳統(tǒng)試驗中在%的應變時由溫度導致的破壞,的分析還表明存在一個區(qū)分脆性破壞和延性破壞的臨界溫度,而且,在每一個溫度點上拉伸應力(最大的)和它對應的應變也表現(xiàn)在了圖3中??磥恚驗閭鹘y(tǒng)方法有相當大的經(jīng)驗成分在其中,Tε=1%的容許應變和混合料的功能間似乎并不相關,與含摻合料的中說明任何的等溫直接拉伸試驗跟僅用失效應變或應力比起來產生數(shù)據(jù)和在高況下含摻合料的瀝青混合料純粹的延性行為但在非常低的溫度下又是純粹的脆性行為。在他們之間的過渡溫度,瀝青的行為從延性從試驗結果中得出 得到了在確定應變率下的脆延性轉變的臨界溫---Tbdb,在應力——溫度曲線上(圖3)對應著拉伸應力的峰值。因此可以更容易更準確的確定Tbdb。Kingetal.先前已經(jīng)發(fā)現(xiàn)當溫度降到-15°C以下性轉變的臨界溫度,由此被命名為Tbdb(相應于2.22m/m/h的應變率),它是1可以看出1Tbdb

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論