




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.2.已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.53.給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種4.已知函數(shù)(,,),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知滿足,,,則在上的投影為()A. B. C. D.26.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或77.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.328.如圖在直角坐標(biāo)系中,過原點(diǎn)作曲線的切線,切點(diǎn)為,過點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.9.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.10.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.11.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.12.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③二、填空題:本題共4小題,每小題5分,共20分。13.若,則______.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.15.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.16.已知等邊三角形的邊長(zhǎng)為1.,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.18.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項(xiàng)和;(2)若數(shù)列為等差數(shù)列,且對(duì)任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時(shí),求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請(qǐng)寫出所有滿足條件的數(shù)列;若不能,請(qǐng)說明理由.19.(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.20.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過濾器采用并聯(lián)安裝,再與一級(jí)過濾器串聯(lián)安裝.其中每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購買濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級(jí)濾芯更換頻數(shù)分布表一級(jí)濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級(jí)濾芯更換頻數(shù)條形圖以100個(gè)一級(jí)過濾器更換濾芯的頻率代替1個(gè)一級(jí)過濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過濾器更換濾芯的頻率代替1個(gè)二級(jí)過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.21.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項(xiàng)和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列、的通項(xiàng)公式;(2)令,證明:.22.(10分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績(jī),統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示:等級(jí)不合格合格得分頻數(shù)624(Ⅰ)若測(cè)試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識(shí)有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評(píng)估該校安全教育活動(dòng)的成效,若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由題意,根據(jù)雙曲線的對(duì)稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.2、C【解析】
由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.3、C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時(shí)有種情況,則有種不同的安排方法;故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.4、B【解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識(shí)得到的解析式,然后分別找出和的等價(jià)條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于中檔題.5、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.6、C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.7、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長(zhǎng)為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡(jiǎn)單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.8、A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.9、B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.10、B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)?,所以,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.11、B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨取;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.12、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接利用關(guān)系式求出函數(shù)的被積函數(shù)的原函數(shù),進(jìn)一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):定積分的應(yīng)用,被積函數(shù)的原函數(shù)的求法,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.14、【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
模擬程序的運(yùn)行過程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語句中的循環(huán)語句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16、【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進(jìn)而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;
(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標(biāo)方程為曲線的直角坐標(biāo)方程為(2)在直角坐標(biāo)系下,,,恰好過的圓心,
∴由得,是橢圓上的兩點(diǎn),在極坐標(biāo)下,設(shè),分別代入中,有和∴,則,即18、(1)(2)①見解析②數(shù)列不能為等比數(shù)列,見解析【解析】
(1)根據(jù)數(shù)列通項(xiàng)公式的特點(diǎn),奇數(shù)項(xiàng)為等差數(shù)列,偶數(shù)項(xiàng)為等比數(shù)列,選用分組求和的方法進(jìn)行求解;(2)①設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),得出;當(dāng)n為偶數(shù)時(shí),得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設(shè)可以為等比數(shù)列,結(jié)合題意得出矛盾,進(jìn)而得出數(shù)列不能為等比數(shù)列.【詳解】(1)因?yàn)?,,所以,且,由題意可知,數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列是首項(xiàng)和公比均為4的等比數(shù)列,所以;(2)①證明:設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),,若,則當(dāng)時(shí),,即,與題意不符,所以,當(dāng)n為偶數(shù)時(shí),,,若,則當(dāng)時(shí),,即,與題意不符,所以,綜上,,原命題得證;②假設(shè)可以為等比數(shù)列,設(shè)公比為q,因?yàn)?,所以,所以,,因?yàn)楫?dāng)時(shí),,所以當(dāng)n為偶數(shù),且時(shí),,即當(dāng)n為偶數(shù),且時(shí),不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列.【點(diǎn)睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時(shí)一般是結(jié)合通項(xiàng)公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細(xì)思細(xì)算,本題綜合性較強(qiáng),難度較大,側(cè)重考查邏輯推理和數(shù)學(xué)運(yùn)算的核心素養(yǎng).19、(1)見解析(2)【解析】
(Ⅰ)取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn).理由如下:取的中點(diǎn),連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點(diǎn)睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問題和解答問題的能力.20、(1)0.024;(2)分布列見解析,;(3)【解析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級(jí)過濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級(jí)過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級(jí)濾芯所需總費(fèi)用(單位:元)因?yàn)?,且?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買一級(jí)濾芯和二級(jí)濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購買的各級(jí)濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年六盤水市中醫(yī)醫(yī)院招聘考試真題
- 內(nèi)蒙古工業(yè)大學(xué)招聘事業(yè)編制工作人員筆試真題2024
- 河北雄安雄州人才發(fā)展集團(tuán)有限公司招聘筆試真題2024
- 房屋出租合同補(bǔ)充協(xié)議書9篇
- 城市公共交通突發(fā)事件應(yīng)急預(yù)案措施
- 燃?xì)夤艿朗┕ぶ械沫h(huán)境保護(hù)措施
- 2025年安全培訓(xùn)考試試題附答案AB卷
- 2024-2025公司項(xiàng)目部管理人員安全培訓(xùn)考試試題帶答案
- 2024-2025員工三級(jí)安全培訓(xùn)考試試題附參考答案(培優(yōu))
- 2024-2025項(xiàng)目部安全培訓(xùn)考試試題附完整答案(必刷)
- 新員工培訓(xùn)考試【圖書專員】
- 防偽包裝技術(shù)
- X互聯(lián)網(wǎng)公司W(wǎng)LAN無線網(wǎng)絡(luò)優(yōu)化方案全解
- 圓柱鋼模計(jì)算書
- 合成寶石特征x
- 查擺問題及整改措施
- 年度研發(fā)費(fèi)用專項(xiàng)審計(jì)報(bào)告模板(共22頁)
- 隧道工程隧道支護(hù)結(jié)構(gòu)設(shè)計(jì)實(shí)用教案
- 中央民族大學(xué)人類學(xué)博士考試人類學(xué)理論與方法真題
- 得力打卡機(jī)破解Excel工作表保護(hù)密碼4頁
- 炭陽極焙燒爐7室運(yùn)行實(shí)踐
評(píng)論
0/150
提交評(píng)論