![2023屆甘肅省白銀市平川中恒學校數(shù)學高三上期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view/3b613eb4858b14a3848a4922a4119561/3b613eb4858b14a3848a4922a41195611.gif)
![2023屆甘肅省白銀市平川中恒學校數(shù)學高三上期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view/3b613eb4858b14a3848a4922a4119561/3b613eb4858b14a3848a4922a41195612.gif)
![2023屆甘肅省白銀市平川中恒學校數(shù)學高三上期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view/3b613eb4858b14a3848a4922a4119561/3b613eb4858b14a3848a4922a41195613.gif)
![2023屆甘肅省白銀市平川中恒學校數(shù)學高三上期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view/3b613eb4858b14a3848a4922a4119561/3b613eb4858b14a3848a4922a41195614.gif)
![2023屆甘肅省白銀市平川中恒學校數(shù)學高三上期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view/3b613eb4858b14a3848a4922a4119561/3b613eb4858b14a3848a4922a41195615.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.2.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.3.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.4.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.5.若集合,,則=()A. B. C. D.6.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.107.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.8.已知且,函數(shù),若,則()A.2 B. C. D.9.已知函數(shù)的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.10.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.11.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-512.已知集合,,若,則()A.4 B.-4 C.8 D.-8二、填空題:本題共4小題,每小題5分,共20分。13.已知是函數(shù)的極大值點,則的取值范圍是____________.14.已知,則=___________,_____________________________15.雙曲線的焦距為__________,漸近線方程為________.16.已知實數(shù),且由的最大值是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.18.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.19.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.20.(12分)已知函數(shù)(1)若對任意恒成立,求實數(shù)的取值范圍;(2)求證:21.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.22.(10分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.2、A【解析】
先由題和拋物線的性質(zhì)求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關鍵,屬于中檔題.3、B【解析】
由題意首先確定幾何體的空間結構特征,然后結合空間結構特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點睛】(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠?qū)o出的三視圖進行恰當?shù)姆治觯瑥娜晥D中發(fā)現(xiàn)幾何體中各元素間的位置關系及數(shù)量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.4、C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.5、C【解析】試題分析:化簡集合故選C.考點:集合的運算.6、C【解析】
根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質(zhì),屬難題.7、C【解析】
不妨設在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力.8、C【解析】
根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應用,由分段函數(shù)解析式求自變量.9、D【解析】
根據(jù)對稱關系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結合的方式來進行求解.10、B【解析】
建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.11、C【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.12、B【解析】
根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴在上單調(diào)遞增,時,,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,,所以,這與是函數(shù)的極大值點矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,由知須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關系,可得.14、?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.15、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.16、【解析】
將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】
當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調(diào)性,計算即為導函數(shù)的零點;
當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法.注意分類討論和構造新函數(shù)求函數(shù)的最值的應用.18、(1)(2)【解析】
(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.19、(1);(2)見解析.【解析】
(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結合零點存在定理可得出結論;(2)設函數(shù)的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導出,再利用正弦函數(shù)的單調(diào)性可得出結論.【詳解】(1),,,當時,,,,則函數(shù)在上單調(diào)遞增;當時,,,,則函數(shù)在上單調(diào)遞減;當時,,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.20、(1);(2)見解析.【解析】
(1)將問題轉(zhuǎn)化為對任意恒成立,換元構造新函數(shù)即可得解;(2)結合(1)可得,令,求導后證明其導函數(shù)單調(diào)遞增,結合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調(diào)遞增;當時,,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數(shù),又,當時,;當時,,在上是減函數(shù),在上是增函數(shù),,即/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國鐵基/銅基粉末冶金含油軸承行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國預制混凝土構件數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國螺旋波節(jié)管換熱器數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國啤酒花數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國六角蜂窩斜管數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國LED標志字牌數(shù)據(jù)監(jiān)測研究報告
- 2025年中國高速翅片沖壓全自動生產(chǎn)線市場調(diào)查研究報告
- 2025年中國離心式風幕機市場調(diào)查研究報告
- 2025年中國電子火花機市場調(diào)查研究報告
- 2025年中國電動助力車用鉛酸蓄電池市場調(diào)查研究報告
- 2025民政局離婚協(xié)議書范本(民政局官方)4篇
- 2024年03月四川農(nóng)村商業(yè)聯(lián)合銀行信息科技部2024年校園招考300名工作人員筆試歷年參考題庫附帶答案詳解
- 小學一年級數(shù)學上冊口算練習題總匯
- 睡眠專業(yè)知識培訓課件
- 潤滑油知識-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 臨床思維能力培養(yǎng)
- 人教版高中物理必修第三冊第十章靜電場中的能量10-1電勢能和電勢練習含答案
- 《工程勘察設計收費標準》(2002年修訂本)
- 中國宗教文化 中國古代宗教文化的特點及現(xiàn)代意義
- 2024年四川省巴中市級事業(yè)單位選聘15人歷年高頻難、易錯點練習500題附帶答案詳解
評論
0/150
提交評論