2022年山東省九校數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第1頁(yè)
2022年山東省九校數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第2頁(yè)
2022年山東省九校數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第3頁(yè)
2022年山東省九校數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第4頁(yè)
2022年山東省九校數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)、滿(mǎn)足,則的最小值是()A. B. C. D.2.如圖所示是某年第一季度五省GDP情況圖,則下列說(shuō)法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實(shí)現(xiàn)了增長(zhǎng)C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個(gè)D.去年同期浙江省的GDP總量超過(guò)了4500億元3.函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-24.1777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫(huà)著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.5.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.126.已知,,若,則向量在向量方向的投影為()A. B. C. D.7.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③8.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大9.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.10.已知命題,,則是()A., B.,.C., D.,.11.如圖,已知直線與拋物線相交于A,B兩點(diǎn),且A、B兩點(diǎn)在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.12.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點(diǎn),且,,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在直線l與函數(shù)及的圖象都相切,則實(shí)數(shù)的最小值為_(kāi)__________.14.若實(shí)數(shù),滿(mǎn)足不等式組,則的最小值為_(kāi)_____.15.若,則__________.16.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到一個(gè)偶函數(shù)圖象,則________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點(diǎn)M(2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.18.(12分)在中,角A,B,C的對(duì)邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長(zhǎng)為8,求b.19.(12分)如圖,在長(zhǎng)方體中,,為的中點(diǎn),為的中點(diǎn),為線段上一點(diǎn),且滿(mǎn)足,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.20.(12分)在中,角的對(duì)邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.22.(10分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個(gè)數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.2、D【解析】

根據(jù)折線圖、柱形圖的性質(zhì),對(duì)選項(xiàng)逐一判斷即可.【詳解】由折線圖可知A、B項(xiàng)均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個(gè).故C項(xiàng)正確;.故D項(xiàng)不正確.故選:D.【點(diǎn)睛】本題考查折線圖、柱形圖的識(shí)別,考查學(xué)生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.3、A【解析】

求出,對(duì)分類(lèi)討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個(gè)零點(diǎn),.故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類(lèi)討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.4、D【解析】

根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.5、C【解析】

由開(kāi)始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻浚蔬xC.【點(diǎn)睛】框圖問(wèn)題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。6、B【解析】

由,,,再由向量在向量方向的投影為化簡(jiǎn)運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題7、C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.8、C【解析】

,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對(duì)稱(chēng)軸,開(kāi)口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.9、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項(xiàng)

故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.10、B【解析】

根據(jù)全稱(chēng)命題的否定為特稱(chēng)命題,得到結(jié)果.【詳解】根據(jù)全稱(chēng)命題的否定為特稱(chēng)命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.11、C【解析】

直線恒過(guò)定點(diǎn),由此推導(dǎo)出,由此能求出點(diǎn)的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過(guò)定點(diǎn),如圖過(guò)A、B分別作于M,于N,由,則,點(diǎn)B為AP的中點(diǎn)、連接OB,則,∴,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為,把代入直線,解得,故選:C.【點(diǎn)睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時(shí)要注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用,屬于中檔題.12、B【解析】

建立空間直角坐標(biāo)系,利用向量法計(jì)算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點(diǎn)為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點(diǎn)睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)直線l與函數(shù)及的圖象分別相切于,,因?yàn)椋院瘮?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)?,所以函?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)榇嬖谥本€l與函數(shù)及的圖象都相切,所以,所以,令,設(shè),則,當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,所以實(shí)數(shù)的最小值為.14、5【解析】

根據(jù)題意,畫(huà)出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動(dòng)直線縱截距的最值,即可求解【詳解】畫(huà)出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時(shí),取得最小值,且.【點(diǎn)睛】本題考查線性規(guī)劃問(wèn)題,屬于基礎(chǔ)題15、【解析】

由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計(jì)算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點(diǎn)睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.16、【解析】

根據(jù)平移后關(guān)于軸對(duì)稱(chēng)可知關(guān)于對(duì)稱(chēng),進(jìn)而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個(gè)單位長(zhǎng)度后得到偶函數(shù)圖象,即關(guān)于軸對(duì)稱(chēng)關(guān)于對(duì)稱(chēng)即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)三角函數(shù)的對(duì)稱(chēng)軸求解參數(shù)值的問(wèn)題,關(guān)鍵是能夠通過(guò)平移后的對(duì)稱(chēng)軸得到原函數(shù)的對(duì)稱(chēng)軸,進(jìn)而利用特殊值的方式來(lái)進(jìn)行求解.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)l:,C方程為;(2)=【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進(jìn)一步轉(zhuǎn)換為.直線l的極坐標(biāo)方程為ρcos(θ+)=1,則轉(zhuǎn)換為直角坐標(biāo)方程為.(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對(duì)應(yīng)的參數(shù)),所以,,所以=.【點(diǎn)睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.18、(1);(2)【解析】

(1)通過(guò)正弦定理和內(nèi)角和定理化簡(jiǎn),再通過(guò)二倍角公式即可求出;(2)通過(guò)三角形面積公式和三角形的周長(zhǎng)為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.【點(diǎn)睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.19、(1)證明見(jiàn)解析(2)【解析】

(1)解法一:作的中點(diǎn),連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過(guò)證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計(jì)算出二面角的余弦值.【詳解】(1)法一:作的中點(diǎn),連接,.又為的中點(diǎn),∴為的中位線,∴,又為的中點(diǎn),∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長(zhǎng)方體中,,,兩兩互相垂直,建立空間直角坐標(biāo)系如圖所示,則,,,,,,,,,,,.(1)設(shè)平面的一個(gè)法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設(shè)平面的一個(gè)法向量為,則,令,則,.∴.同理可算得平面的一個(gè)法向量為∴,又由圖可知二面角的平面角為一個(gè)鈍角,故二面角的余弦值為.【點(diǎn)睛】本小題考查線面的位置關(guān)系,空間向量與線面角,二面角等基礎(chǔ)知識(shí),考查空間想象能力,推理論證能力,運(yùn)算求解能力,數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.20、(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時(shí),的面積有最大值4.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.21、(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類(lèi)討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類(lèi)討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)?,所以在單調(diào)遞增,又,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.令(),則.(i)若時(shí),,在單調(diào)遞增,所以,滿(mǎn)足題意.(ii)若時(shí),,滿(mǎn)足題意.(iii)若時(shí),,在單調(diào)遞減,所以.不滿(mǎn)足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,所以,即.變形得,,所以時(shí),,所以當(dāng)時(shí),.又由上式得,當(dāng)時(shí),,,.因此不等式(*)均成立.令(),則,(i)若時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.(ii)若時(shí),,在單調(diào)遞增,所以.因此,①當(dāng)時(shí),此時(shí),,,則需由(*)知,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),所以.②當(dāng)時(shí),此時(shí),,則當(dāng)時(shí),(由(*)知);當(dāng)時(shí),(由(*)知).故對(duì)于任意,.綜上述:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類(lèi)討論、及邏輯推理能力與計(jì)算能力

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論