![正態(tài)分布圖學(xué)習(xí)_第1頁(yè)](http://file4.renrendoc.com/view/b080992146d7f06110d8634f58fc72c5/b080992146d7f06110d8634f58fc72c51.gif)
![正態(tài)分布圖學(xué)習(xí)_第2頁(yè)](http://file4.renrendoc.com/view/b080992146d7f06110d8634f58fc72c5/b080992146d7f06110d8634f58fc72c52.gif)
![正態(tài)分布圖學(xué)習(xí)_第3頁(yè)](http://file4.renrendoc.com/view/b080992146d7f06110d8634f58fc72c5/b080992146d7f06110d8634f58fc72c53.gif)
![正態(tài)分布圖學(xué)習(xí)_第4頁(yè)](http://file4.renrendoc.com/view/b080992146d7f06110d8634f58fc72c5/b080992146d7f06110d8634f58fc72c54.gif)
![正態(tài)分布圖學(xué)習(xí)_第5頁(yè)](http://file4.renrendoc.com/view/b080992146d7f06110d8634f58fc72c5/b080992146d7f06110d8634f58fc72c55.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
關(guān)于正態(tài)分布圖學(xué)習(xí)第1頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五最常用的連續(xù)分布--
正態(tài)分布(高斯分布)中心極限定理表明:一個(gè)變量如果是由大量微小的、獨(dú)立的隨機(jī)因素疊加的結(jié)果,那么這個(gè)變量一定是正態(tài)變量。如:測(cè)量誤差、產(chǎn)品重量、人的身高、年降雨量等。第2頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五樣本均值與正態(tài)分布從正態(tài)總體N(μ,σ2)取出樣本,則樣本均值服從正態(tài)分布N(μ,σ2/n)為什么重復(fù)測(cè)量同一個(gè)零件多次,再取其讀數(shù)的均值能夠起到減少誤差的作用從一個(gè)分布未知的總體中抽取樣本,但已知總體均值為μ,方差為σ2
,則當(dāng)樣本容量充分大時(shí),樣本均值近似服從正態(tài)分布N(μ,σ2/n)第3頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第4頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第5頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第6頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第7頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第8頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第9頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五正態(tài)分布的概念和特征變量的頻數(shù)或頻率呈中間最多,兩端逐漸對(duì)稱(chēng)地減少,表現(xiàn)為鐘形的一種概率分布。從理論上說(shuō),若隨機(jī)變量x的概率密度函數(shù)為:則稱(chēng)x服從均數(shù)為μ,方差為σ2的正態(tài)分布第10頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五正態(tài)分布的特征均數(shù)處最高以均數(shù)為中心,兩端對(duì)稱(chēng)永遠(yuǎn)不與x軸相交的鐘型曲線有兩個(gè)參數(shù):均數(shù)——位置參數(shù),標(biāo)準(zhǔn)差——形狀(變異度)參數(shù)第11頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五均數(shù)決定正態(tài)分布的位置123標(biāo)準(zhǔn)差相同、均數(shù)不同的三個(gè)正態(tài)分布曲線第12頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五標(biāo)準(zhǔn)差決定正態(tài)分布的“體型”均數(shù)相同、標(biāo)準(zhǔn)差不同的三條正態(tài)分布曲線第13頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五正態(tài)分布曲線下的面積
μ±σ范圍內(nèi)的面積為68.27%
μ±1.96σ范圍內(nèi)的面積為95%
μ±2.58σ范圍內(nèi)的面積占99%第14頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五兩個(gè)樣本的樣本點(diǎn)落入均數(shù)加減一個(gè)標(biāo)準(zhǔn)差區(qū)間的百分比第15頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第16頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五上、下界已拉到最遠(yuǎn)第17頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五正態(tài)分布由均值和標(biāo)準(zhǔn)差確定正態(tài)曲線下的面積總和是1,正態(tài)曲線下一定區(qū)間內(nèi)的面積代表變量值落在該區(qū)間的概率求概率→求正態(tài)曲線下區(qū)間內(nèi)的面積→求定積分或者轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布再求uΦ(u)/pbs/cat_050/pbs/normalcurve.html第18頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五正態(tài)分布的標(biāo)準(zhǔn)化標(biāo)準(zhǔn)正態(tài)分布:指均數(shù)為0,標(biāo)準(zhǔn)差為1的正態(tài)分布正態(tài)分布的標(biāo)準(zhǔn)化:若x服從正態(tài)分布N(μ,σ2),則z就服從均數(shù)為0,標(biāo)準(zhǔn)差為1的正態(tài)分布第19頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五正態(tài)分布的數(shù)學(xué)期望和方差第20頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五第21頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五如何檢驗(yàn)數(shù)據(jù)是否服從正態(tài)分布?經(jīng)驗(yàn)法:如畫(huà)出數(shù)據(jù)頻數(shù)(頻率)條形圖、莖葉圖,看其分布形態(tài)正態(tài)性檢驗(yàn):Matlab、SPSS等軟件、正態(tài)概率紙第22頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五橫坐標(biāo)等間隔,縱坐標(biāo)按標(biāo)準(zhǔn)正態(tài)分布函數(shù)值給出。逐一點(diǎn)在正態(tài)概率紙上,若它們?cè)谝粭l直線附近,則認(rèn)為該批數(shù)據(jù)來(lái)自正態(tài)總體一個(gè)均值為μ,標(biāo)準(zhǔn)差為σ的正態(tài)分布的圖像是一條通過(guò)點(diǎn)(μ,0.5)而斜率為1/σ的直線第23頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五累積分布函數(shù)設(shè)X是一個(gè)隨機(jī)變量,對(duì)任意實(shí)數(shù)x,則稱(chēng)為隨機(jī)變量X的累積分布函數(shù)(cdf)X離散X連續(xù)正態(tài)分布的分布函數(shù)第24頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五求cdf拋擲2枚硬幣,隨機(jī)變量X是擲得正面的個(gè)數(shù),求X的累積分布函數(shù)。第25頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五求cdf2.二項(xiàng)分布的概率密度函數(shù)是隨機(jī)變量X是服從二項(xiàng)分布的,求X的累積分布函數(shù)。>>p=cdf('bino',0:5,5,0.3)p=0.16810.52820.83690.96920.99761.0000第26頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五向半徑為r的圓內(nèi)隨機(jī)拋一點(diǎn),求此點(diǎn)到圓心之距離X的累積分布函數(shù),并求P(X>2r/3)第27頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五設(shè)X服從區(qū)間(a,b)上的均勻分布,求E(X).先求密度函數(shù)pdf:先求分布函數(shù)cdf:第28頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五一家麥片生成廠家生產(chǎn)小包裝和大包裝兩種規(guī)格的麥片,每袋麥片的重量互相獨(dú)立,符合如下正態(tài)分布。離散程度哪個(gè)大?1)兩種包裝各隨機(jī)選一包,求大包裝比小包裝3倍少的概率P(e<3s)2)隨機(jī)地選一大包裝和三個(gè)小包裝,求大包裝比3包小包裝總和輕的概率P(e<s1+s2+s3)N(315,4)N(950,25)第29頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五E-3S服從什么分布呢?E(E-3S)=E(E)-3E(S)=950-3×315=5Var(E-3S)=Var(E)+9Var(S)=25+9×4=61∴E-3S~N(5,61)P(e-3s<0)≈0.261E-(S1+S2+S3)服從什么分布呢?E(E-(S1+S2+S3))=E(E)-3E(S)=950-3×315=5Var(E-(S1+S2+S3))=Var(E)+3Var(S)=25+3×4=37∴E-(S1+S2+S3)~N(5,37)P(e-s1-s2-s3<0)≈0.206和差還是正態(tài)分布第30頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五一個(gè)個(gè)案----日產(chǎn)與美產(chǎn)的SONY彩電
20世紀(jì)70年代后期,有人發(fā)現(xiàn)日產(chǎn)與美產(chǎn)的SONY彩電在美國(guó)市場(chǎng)受歡迎的程度不同,按說(shuō)兩地工廠按統(tǒng)一設(shè)計(jì)方案同一生產(chǎn)線生產(chǎn)同一牌號(hào)的電視機(jī)不應(yīng)受到消費(fèi)者的不同待遇,于是,就此展開(kāi)了調(diào)查,其報(bào)告刊登在日本1979年4月17日的《朝日新聞》上。調(diào)查發(fā)現(xiàn),日產(chǎn)SONY電視機(jī)彩色濃度的分布曲線是一條以彩色濃度目標(biāo)值m為中心的正態(tài)分布曲線;而美產(chǎn)SONY電視機(jī)彩色濃度的分布曲線是一條在區(qū)間[m-5,m+5]上是常數(shù),在此區(qū)間外為0的一條均勻分布曲線??磥?lái)它們的確像來(lái)自?xún)蓚€(gè)不同分布的總體,因此在市場(chǎng)上受到了不同的待遇。第31頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五一個(gè)個(gè)案----日產(chǎn)與美產(chǎn)的SONY彩電第32頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五某廠準(zhǔn)備實(shí)行計(jì)件超產(chǎn)獎(jiǎng),為此需要對(duì)生產(chǎn)定額做出新規(guī)定。根據(jù)以往的記錄,可知各個(gè)工人每月裝配的產(chǎn)品數(shù)服從正態(tài)分布。假定車(chē)間希望有10%的工人能拿到超產(chǎn)獎(jiǎng),試問(wèn)工人每月需完成多少件產(chǎn)品才能獲得獎(jiǎng)金?
解:設(shè)X為工人每月裝配的產(chǎn)品數(shù),設(shè)C是能拿到超產(chǎn)獎(jiǎng)的工人完成定額。根據(jù)題意,有能拿到超產(chǎn)獎(jiǎng)的工人完成定額4077件。用Excel計(jì)算已知累計(jì)概率求相對(duì)應(yīng)的x:
fx/統(tǒng)計(jì)/Norminv計(jì)算正態(tài)分布的概率:fx/常用函數(shù)/NormdistC第33頁(yè),共35頁(yè),2022年,5月20日,4點(diǎn)11分,星期五作業(yè)1.一家銀行的男員工體重服從miu=71.5kg,sigma=7.3kg的正態(tài)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 全新員工入職合同下載
- 2025廣告發(fā)布委托合同書(shū)版范本
- 全新房地產(chǎn)買(mǎi)賣(mài)合同范文下載
- 公司業(yè)務(wù)擔(dān)保合同
- 單位貨物采購(gòu)合同格式
- 幼兒園股份合伙經(jīng)營(yíng)合作合同書(shū)
- 2024年中考物理(安徽卷)真題詳細(xì)解讀及評(píng)析
- 地板磚購(gòu)銷(xiāo)合同模板
- 拓寬知識(shí)面的重要性主題班會(huì)
- 2025如果合同標(biāo)的不合格怎么辦反擔(dān)保
- 浙教版八年級(jí)下冊(cè)科學(xué)第一章 電和磁整章思維導(dǎo)圖
- (正式版)SH∕T 3541-2024 石油化工泵組施工及驗(yàn)收規(guī)范
- 動(dòng)物疫病傳染病防控培訓(xùn)制度
- 美團(tuán)代運(yùn)營(yíng)合同模板
- 初中英語(yǔ)七選五經(jīng)典5篇(附帶答案)
- GB/T 43676-2024水冷預(yù)混低氮燃燒器通用技術(shù)要求
- 特種設(shè)備檢驗(yàn)現(xiàn)場(chǎng)事故案例分析
- 2023-2024學(xué)年西安市高二數(shù)學(xué)第一學(xué)期期末考試卷附答案解析
- 關(guān)于教師誦讀技能培訓(xùn)課件
- 化學(xué)品使用人員培訓(xùn)課程
- 【京東倉(cāng)庫(kù)出庫(kù)作業(yè)優(yōu)化設(shè)計(jì)13000字(論文)】
評(píng)論
0/150
提交評(píng)論