高中向量知識點歸納_第1頁
高中向量知識點歸納_第2頁
高中向量知識點歸納_第3頁
高中向量知識點歸納_第4頁
高中向量知識點歸納_第5頁
免費預覽已結束,剩余2頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

高中向量知識點歸納高中向量知識點歸納高中向量知識點歸納V:1.0精細整理,僅供參考高中向量知識點歸納日期:20xx年X月向量一、平面向量的概念及線性運算1.向量的有關概念名稱定義備注向量既有大小又有方向的量;向量的大小叫做向量的長度(或稱模)平面向量是自由向量零向量長度為0的向量;其方向是任意的記作0單位向量長度等于1個單位的向量非零向量a的單位向量為±eq\f(a,|a|)平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為02.向量的線性運算向量運算定義法則(或幾何意義)運算律加法求兩個向量和的運算(1)交換律:a+b=b+a.(2)結合律:(a+b)+c=a+(b+c).減法求a與b的相反向量-b的和的運算叫做a與b的差三角形法則a-b=a+(-b)數(shù)乘求實數(shù)λ與向量a的積的運算(1)|λa|=|λ||a|;(2)當λ>0時,λa的方向與a的方向相同;當λ<0時,λa的方向與a的方向相反;當λ=0時,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共線向量定理向量a(a≠0)與b共線的充要條件是存在唯一一個實數(shù)λ,使得b=λa.二、平面向量基本定理及坐標表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2.其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底.2.平面向量的坐標運算(1)向量加法、減法、數(shù)乘及向量的模設a=(x1,y1),b=(x2,y2),則a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq\r(x\o\al(2,1)+y\o\al(2,1)).(2)向量坐標的求法①若向量的起點是坐標原點,則終點坐標即為向量的坐標.②設A(x1,y1),B(x2,y2),則eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up6(→))|=eq\r(x2-x12+y2-y12).3.平面向量共線的坐標表示設a=(x1,y1),b=(x2,y2),a∥b?x1y2-x2y1=0.三、平面向量的數(shù)量積1.平面向量的數(shù)量積已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a和b的數(shù)量積(或內(nèi)積),記作a·b=|a||b|cosθ.規(guī)定:零向量與任一向量的數(shù)量積為__0__.兩個非零向量a與b垂直的充要條件是a·b=0,兩個非零向量a與b平行的充要條件是a·b=±|a||b|.2.平面向量數(shù)量積的幾何意義數(shù)量積a·b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積.3.平面向量數(shù)量積的重要性質(zhì)(1)e·a=a·e=|a|cosθ;(2)非零向量a,b,a⊥b?a·b=0;(3)當a與b同向時,a·b=|a||b|;當a與b反向時,a·b=-|a||b|,a·a=a2,|a|=eq\r(a·a);(4)cosθ=eq\f(a·b,|a||b|);(5)|a·b|__≤__|a||b|.4.平面向量數(shù)量積滿足的運算律(1)a·b=b·a(交換律);(2)(λa)·b=λ(a·b)=a·(λb)(λ為實數(shù));(3)(a+b)·c=a·c+b·c.5.平面向量數(shù)量積有關性質(zhì)的坐標表示設向量a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2,由此得到(1)若a=(x,y),則|a|2=x2+y2或|a|=eq\r(x2+y2).(2)設A(x1,y1),B(x2,y2),則A、B兩點間的距離|AB|=|eq\o(AB,\s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論