版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年江蘇省南通市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.設(shè)是l,m兩條不同直線,α,β是兩個不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m
B.若l//α,m⊥l,則m⊥α
C.若l//α,m//α,則l//m
D.若l⊥α,l///β則a⊥β
2.若函數(shù)f(x)=x2+mx+1有兩個不同的零點,則實數(shù)m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
3.要得到函數(shù)y=sin2x的圖像,只需將函數(shù):y=cos(2x-π/4)的圖像A.向左平移π/8個單位B.向右平移π/8個單位C.向左平移π/4個單位D.向右平移π/4個單位
4.設(shè)集合,則A與B的關(guān)系是()A.
B.
C.
D.
5.在等差數(shù)列中,若a3+a17=10,則S19等于()A.75B.85C.95D.65
6.有四名高中畢業(yè)生報考大學(xué),有三所大學(xué)可供選擇,每人只能填報一所大學(xué),則報考的方案數(shù)為()A.
B.
C.
D.
7.集合M={a,b},N={a+1,3},a,b為實數(shù),若M∩N={2},則M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}
8.設(shè)a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
9.A.B.C.
10.某高職院校為提高辦學(xué)質(zhì)量,建設(shè)同時具備理論教學(xué)和實踐教學(xué)能力的“雙師型”教師隊伍,現(xiàn)決定從3名男教師和3名女教師中任選2人一同到某企業(yè)實訓(xùn),則選中的2人都是男教師的概率為()A.
B.
C.
D.
二、填空題(10題)11.
12.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.
13.
14.
15.
16.己知等比數(shù)列2,4,8,16,…,則2048是它的第()項。
17.以點(1,2)為圓心,2為半徑的圓的方程為_______.
18.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
19.等差數(shù)列中,a2=2,a6=18,則S8=_____.
20.
三、計算題(5題)21.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
22.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
23.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
24.甲、乙兩人進行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
25.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
四、證明題(5題)26.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
27.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
28.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
29.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
30.若x∈(0,1),求證:log3X3<log3X<X3.
五、簡答題(5題)31.某中學(xué)試驗班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動,求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。
32.化簡
33.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.求證
35.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積
六、綜合題(5題)36.
37.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
38.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
39.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
40.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
參考答案
1.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對于A:l與m可能異面,排除A;對于B;m與α可能平行或相交,排除B;對于C:l與m可能相交或異面,排除C
2.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個不等實根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
3.B三角函數(shù)圖像的性質(zhì).將函數(shù)y=cos(2x-π/4)向右平移π/8個單位,得到y(tǒng)=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x
4.A
5.C
6.C
7.D集合的運算.∵M∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M={a,b},∴b=2.AUB={1,2,3}.
8.D
9.A
10.C
11.1<a<4
12.-3或7,
13.5
14.-6
15.-1/2
16.第11項。由題可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
17.(x-1)2+(y-2)2=4圓標準方程.圓的標準方程為(x-a)2+(y-2)2=r2,a=1,b=2,r=2
18.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
19.96,
20.0
21.
22.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
23.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
24.
25.
26.
27.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
28.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
29.
30.
31.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
32.
33.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,
34.
35.
36.
37.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為
38.
39.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年專用:煤倉租賃合同
- 2024互聯(lián)網(wǎng)游戲開發(fā)公司與運營商分成協(xié)議
- 2024年度體育賽事LED計分屏采購合同
- 公益日活動小結(jié)(12篇)
- 2024年度EPS圍擋施工及拆除合同
- 2024天然氣運輸環(huán)境影響評估協(xié)議
- 2024年度信息系統(tǒng)安全運維合同-PKISSL基礎(chǔ)應(yīng)用
- 2024年度物流倉儲服務(wù)合作協(xié)議
- 2024年家禽養(yǎng)殖數(shù)字化管理系統(tǒng)建設(shè)合同
- 2024年幼兒園共建協(xié)議
- 2024-2030年組氨酸行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 教育信息化教學(xué)資源建設(shè)規(guī)劃
- 屠宰場食品安全管理制度
- 部編版(2024秋)語文一年級上冊 6 .影子課件
- 2024秋期國家開放大學(xué)??啤缎淌略V訟法學(xué)》一平臺在線形考(形考任務(wù)一至五)試題及答案
- 基于SICAS模型的區(qū)域農(nóng)產(chǎn)品品牌直播營銷策略研究
- 病例討論英文
- 2024秋期國家開放大學(xué)專科《液壓與氣壓傳動》一平臺在線形考(形考任務(wù)+實驗報告)試題及答案
- 【課件】植物體的結(jié)構(gòu)層次課件-2024-2025學(xué)年人教版生物七年級上冊
- 24秋國家開放大學(xué)《0-3歲嬰幼兒的保育與教育》期末大作業(yè)參考答案
- 相對濕度計算公式
評論
0/150
提交評論