版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2023年高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回
2、。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在邊長為的菱形中,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為( )ABCD2已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,則( )A2BC1D3已知,則的大小關(guān)系為ABCD4若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是( )ABCD5設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是Ay與x具有正的
3、線性相關(guān)關(guān)系B回歸直線過樣本點的中心(,)C若該大學某女生身高增加1cm,則其體重約增加0.85kgD若該大學某女生身高為170cm,則可斷定其體重比為58.79kg6高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為( )A40B60C80D1007已知復數(shù),則( )ABCD8盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是( )ABCD9若,則“”的一個充分不必要條件是ABC且D或10已知角的頂點與原點重合,始邊與軸
4、的正半軸重合,終邊經(jīng)過點,則( )ABCD11正三棱柱中,是的中點,則異面直線與所成的角為( )ABCD12已知當,時,則以下判斷正確的是 ABCD與的大小關(guān)系不確定二、填空題:本題共4小題,每小題5分,共20分。13的展開式中常數(shù)項是_.14若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有_.15成都市某次高三統(tǒng)考,成績X經(jīng)統(tǒng)計分析,近似服從正態(tài)分布,且,若該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為_16若冪函數(shù)的圖象經(jīng)過點,則其單調(diào)遞減區(qū)間為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列是等差數(shù)列,前項和為,且,(1)求(2)設(shè),求數(shù)列
5、的前項和18(12分)設(shè)橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,()若,求的值;()證明:當取最小值時,與共線19(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點 (1)求證:平面; (2)求二面角的正切值20(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.21(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設(shè)圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別
6、與x軸交于點R,S,O為坐標原點,求證:為定值.22(10分)已知,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,;法二:,;法三:作出的外接圓直徑,則,.故選:A【點睛】此題考
7、查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.2D【解析】說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值【詳解】由知函數(shù)的周期為4,又是奇函數(shù),又,故選:D【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ)3D【解析】分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,即,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較這就必須
8、掌握一些特殊方法在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確4C【解析】求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題5D【解析】根據(jù)y與x的線性回歸方程為 y=0.85x85.71,則=0
9、.850,y 與 x 具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加 1cm,預測其體重約增加 0.85kg,C正確;該大學某女生身高為 170cm,預測其體重約為0.8517085.71=58.79kg,D錯誤故選D6D【解析】由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學生分析問題的能力,難度容易.7B【解析】
10、分析:利用的恒等式,將分子、分母同時乘以 ,化簡整理得 詳解: ,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.8B【解析】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.9C【解析】,當且僅
11、當 時取等號.故“且 ”是“”的充分不必要條件.選C10A【解析】由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎(chǔ)題.11C【解析】取中點,連接,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出/,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則/,即為異面直線與所成角,設(shè),則,則,.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.
12、12C【解析】由函數(shù)的增減性及導數(shù)的應用得:設(shè),求得可得為增函數(shù),又,時,根據(jù)條件得,即可得結(jié)果【詳解】解:設(shè),則,即為增函數(shù),又,即,所以,所以故選:C【點睛】本題考查了函數(shù)的增減性及導數(shù)的應用,屬中檔題二、填空題:本題共4小題,每小題5分,共20分。13-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14或【解析】函數(shù)的零點方程的根,求出方程的兩根為,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負進行討論.15.【解析
13、】根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合求得,即可得解.【詳解】根據(jù)正態(tài)分布,且,所以故該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為故答案為:【點睛】此題考查正態(tài)分布密度曲線性質(zhì)的理解辨析,根據(jù)曲線的對稱性求解概率,根據(jù)總?cè)藬?shù)求解成績大于114的人數(shù).16【解析】利用待定系數(shù)法求出冪函數(shù)的解析式,再求出的單調(diào)遞減區(qū)間【詳解】解:冪函數(shù)的圖象經(jīng)過點,則,解得;所以,其中;所以的單調(diào)遞減區(qū)間為故答案為:【點睛】本題考查了冪函數(shù)的圖象與性質(zhì)的應用問題,屬于基礎(chǔ)題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 (1) (2) 【解析】(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得
14、, 即可求得數(shù)列的通項公式; (2)由(1)得,利用乘公比錯位相減,即可求解數(shù)列的前n項和【詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,由,得,所以,解得, 所以數(shù)列的通項公式為 (2)由(1)得,兩式相減得,即【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎(chǔ),準確計算求和是關(guān)鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計算能力等.18()()證明見解析【解析】由與,得,的方程為設(shè),則,由得 ()由,得, , 由、三式,消去,并求得,故(),當且僅當或時,取最
15、小值,此時,故與共線19 (1)見證明;(2) 【解析】(1)取PD中點G,可證EFGA是平行四邊形,從而, 得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且, 又且,且,EFGA是平行四邊形,則, 又面,面, 面; (2)解:取AD中點O,連結(jié)PO, 面面,為正三角形,面,且, 連交于,可得,則,即 連,又,可得平面,則, 即是二面角的平面角, 在中,即二面角的正切值為【點睛】本題考查線面平行證明,考查求二面角求二面角的步驟是一作二證三計算即先作出二面角的平面角,然后證明此角是要求的二面角的平
16、面角,最后在三角形中計算20(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結(jié)果.詳解:(1)當時,即故不等式的解集為(2)當時成立等價于當時成立若,則當時;若,的解集為,所以,故綜上,的取值范圍為點睛:該題考查的是有關(guān)絕對值不等式的解法,以及含參的絕對值的式子在某個區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個不等式組來解決,關(guān)于第二問求參數(shù)的取值范圍時,可以應用題中所給的自變量的范圍,去掉一個絕對值符號,之后進行分類討論,求得結(jié)果.21(1);(2);(3) 【解析】(1)依題意,得,由此能求出橢圓C的方程.(2)點與點關(guān)于軸對稱,設(shè),設(shè),由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,故橢圓C的方程為.(2)點與點關(guān)于軸對稱,設(shè),設(shè),由于點在橢圓C上,所以,由,則, .由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設(shè),則直線MP的方程為:,令,得,同理:.故 又點與點在橢圓上,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年浙科版選擇性必修3歷史下冊階段測試試卷
- 2025年外研版選修3地理下冊階段測試試卷含答案
- 2025年滬科新版六年級語文上冊階段測試試卷
- 二零二五年度美容院員工持股計劃股份購買合同4篇
- 2025年度木模板木方綠色認證與采購合同4篇
- 二零二五年度圍欄行業(yè)規(guī)范制定與實施合同2篇
- 二零二五版跨境電商進口商品質(zhì)量保證實務合同范本3篇
- 2025版寧波慈溪編制城市社區(qū)規(guī)劃與建設(shè)合同4篇
- 二零二五版嬰幼兒奶粉行業(yè)培訓與專業(yè)人才培養(yǎng)合同3篇
- 樂器采購合同標準版可打印
- 湖北省黃石市陽新縣2024-2025學年八年級上學期數(shù)學期末考試題 含答案
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報告
- 央視網(wǎng)2025亞冬會營銷方案
- 《00541語言學概論》自考復習題庫(含答案)
- 《無砟軌道施工與組織》 課件 第十講雙塊式無砟軌道施工工藝
- 江蘇省南京市、鹽城市2023-2024學年高三上學期期末調(diào)研測試+英語+ 含答案
- 2024新版《藥品管理法》培訓課件
- 《阻燃材料與技術(shù)》課件 第7講 阻燃橡膠材料
- 爆炸物運輸安全保障方案
- 借名買車的協(xié)議書范文范本
- 江蘇省南京市2025屆高三學業(yè)水平調(diào)研考試數(shù)學試卷(解析版)
評論
0/150
提交評論