2021-2022學(xué)年云南騰沖市高考數(shù)學(xué)四模試卷含解析_第1頁
2021-2022學(xué)年云南騰沖市高考數(shù)學(xué)四模試卷含解析_第2頁
2021-2022學(xué)年云南騰沖市高考數(shù)學(xué)四模試卷含解析_第3頁
2021-2022學(xué)年云南騰沖市高考數(shù)學(xué)四模試卷含解析_第4頁
2021-2022學(xué)年云南騰沖市高考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知是過拋物線焦點(diǎn)的弦,是原點(diǎn),則( )A2B4C3D32設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙

2、曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為( )ABCD3新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收增長(zhǎng)情況,則下列說法錯(cuò)誤的是( )A2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收均逐年增加B2016年我國(guó)數(shù)字出版業(yè)營(yíng)收超過2012年我國(guó)數(shù)字出版業(yè)營(yíng)收的2倍C2016年我國(guó)新聞出版業(yè)營(yíng)收超過2012年我國(guó)新聞出版業(yè)營(yíng)收的1.5倍D2016年我國(guó)數(shù)字出版營(yíng)收占新聞出版營(yíng)收的比例未超過三分之一4的圖象如圖所示,若將的圖象向

3、左平移個(gè)單位長(zhǎng)度后所得圖象與的圖象重合,則可取的值的是( )ABCD5定義:表示不等式的解集中的整數(shù)解之和.若,則實(shí)數(shù)的取值范圍是ABCD6已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若, 則雙曲線的離心率為()ABC4D27設(shè)分別為的三邊的中點(diǎn),則( )ABCD8若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為( )A2BCD9已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則( )ABCD10數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:曲線有四條對(duì)稱軸;曲線上的點(diǎn)到原點(diǎn)的最大距離為;曲線第一象限上任意一點(diǎn)作

4、兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;四葉草面積小于.其中,所有正確結(jié)論的序號(hào)是( )ABCD11已知P是雙曲線漸近線上一點(diǎn),是雙曲線的左、右焦點(diǎn),記,PO,的斜率為,k,若,-2k,成等差數(shù)列,則此雙曲線的離心率為( )ABCD12已知集合,則集合真子集的個(gè)數(shù)為( )A3B4C7D8二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)在區(qū)間(-,1)上遞增,則實(shí)數(shù)a的取值范圍是_14已知點(diǎn)是雙曲線漸近線上的一點(diǎn),則雙曲線的離心率為_15已知函數(shù),若恒成立,則的取值范圍是_.16在中,點(diǎn)在邊上,且,設(shè),則_(用,表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

5、17(12分)如圖,橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,且,為等邊三角形,過點(diǎn)的直線與橢圓在軸右側(cè)的部分交于、兩點(diǎn)(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍18(12分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱,且(1)解關(guān)于的不等式;(2)如果對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍19(12分)在ABC中,分別為三個(gè)內(nèi)角A、B、C的對(duì)邊,且(1)求角A;(2)若且求ABC的面積20(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.21(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面, ,分別是的中點(diǎn).(1)證明:平面平面;(2)已知點(diǎn)在

6、棱上且,求直線與平面所成角的余弦值.22(10分) 選修4-4:極坐標(biāo)與參數(shù)方程 在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】設(shè),設(shè):,聯(lián)立方程得到,計(jì)算得到答案.【詳解】設(shè),故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點(diǎn)睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡(jiǎn)化運(yùn)算,

7、是解題的關(guān)鍵 .2B【解析】由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,所以為等邊三角形,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.3C【解析】通過圖表所給數(shù)據(jù),逐個(gè)選項(xiàng)驗(yàn)證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項(xiàng)A正確;對(duì)于選項(xiàng)B:,正確;對(duì)于選項(xiàng)C:,故C不正確;對(duì)于選項(xiàng)D:,正確.選C.【點(diǎn)睛】本題主要考查柱狀圖是識(shí)別和數(shù)據(jù)分析,題目較為簡(jiǎn)單.4B【解析】根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.

8、【詳解】由圖象可得,函數(shù)的最小正周期為,則,取,則,可得,當(dāng)時(shí),.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)解析式,同時(shí)也考查了利用函數(shù)圖象變換求參數(shù),考查計(jì)算能力,屬于中等題.5D【解析】由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示. 若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.6D【解析】設(shè),根據(jù)可得,再根據(jù)又,由可得,化簡(jiǎn)可得,即可求出離心率【詳

9、解】解:設(shè),即,又,由可得,即,故選:D【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題7B【解析】根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.8B【解析】由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直雙曲線的漸近線方程為,得則離心率故選:B【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9B【解析】根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可

10、求得的值.【詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【點(diǎn)睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡(jiǎn)單題目.10C【解析】利用之間的代換判斷出對(duì)稱軸的條數(shù);利用基本不等式求解出到原點(diǎn)的距離最大值;將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;根據(jù)滿足的不等式判斷出四葉草與對(duì)應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】:當(dāng)變?yōu)闀r(shí), 不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;綜上可知:有四條對(duì)稱軸,故正確;:因?yàn)椋?,所以,所以,取等?hào)時(shí),所以最大距離為,故錯(cuò)誤;:設(shè)

11、任意一點(diǎn),所以圍成的矩形面積為,因?yàn)椋?,所以,取等?hào)時(shí),所以圍成矩形面積的最大值為,故正確;:由可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對(duì)稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對(duì)稱性,可通過替換方程中去分析證明.11B【解析】求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),則,由,成等差數(shù)列

12、,可得,化為,即,可得,故選:【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平12C【解析】解出集合,再由含有個(gè)元素的集合,其真子集的個(gè)數(shù)為個(gè)可得答案.【詳解】解:由,得所以集合的真子集個(gè)數(shù)為個(gè).故選:C【點(diǎn)睛】此題考查利用集合子集個(gè)數(shù)判斷集合元素個(gè)數(shù)的應(yīng)用,含有個(gè)元素的集合,其真子集的個(gè)數(shù)為個(gè),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故

13、答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.14【解析】先表示出漸近線,再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線是因?yàn)樵跐u近線上,所以,故答案為:【點(diǎn)睛】考查雙曲線的離心率的求法,是基礎(chǔ)題.15【解析】求導(dǎo)得到,討論和兩種情況,計(jì)算時(shí),函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳?yàn)?,所以,因?yàn)?,所?當(dāng),即時(shí),則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時(shí),因?yàn)樵谏蠁握{(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解

14、題的關(guān)鍵.16【解析】結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果【詳解】在中,因?yàn)?,所以,又因?yàn)椋怨蚀鸢笧椋骸军c(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)當(dāng)直線斜率不存在時(shí),易求坐標(biāo),從而得到所求面積;當(dāng)直線的斜率存在時(shí),設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論可求得關(guān)于的表達(dá)式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)

15、單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),為等邊三角形,橢圓的標(biāo)準(zhǔn)方程為(2)設(shè)四邊形的面積為當(dāng)直線的斜率不存在時(shí),可得,當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),聯(lián)立得:,面積令,則,令,則,在定義域內(nèi)單調(diào)遞減,綜上所述:四邊形面積的取值范圍是【點(diǎn)睛】本題考查直線與橢圓的綜合應(yīng)用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.18(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱可得的表達(dá)式,再去掉絕對(duì)值即可解不等式;(2)對(duì),不等式成立等價(jià)于,去絕對(duì)值得不等式

16、組,即可求得實(shí)數(shù)的取值范圍.試題解析:(1)函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱, 原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需, 解得,的取值范圍是.19(1); (2).【解析】(1)整理得:,再由余弦定理可得,問題得解(2)由正弦定理得:,再代入即可得解【詳解】(1)由題意,得,;(2)由正弦定理,得,,.【點(diǎn)睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡(jiǎn)能力,屬于基礎(chǔ)題20(1)(2)證明見解析【解析】(1)求導(dǎo)得到,解得答案.(2)變形得到,令函數(shù),求導(dǎo)得到函數(shù)單調(diào)區(qū)間得到,得到證明.【詳解】(1),解得.(2)得,變形得,令函數(shù),令解得,

17、當(dāng)時(shí),時(shí).函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而函數(shù)在區(qū)間上單調(diào)遞增,即,即,恒成立.【點(diǎn)睛】本題考查了根據(jù)切線求參數(shù),證明不等式,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,綜合應(yīng)用能力.21(1)證明見解析;(2).【解析】(1)由平面幾何知識(shí)可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標(biāo)系,可求得面PAB的法向量,再運(yùn)用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,而、分別是、的中點(diǎn), 故面,又且,故四邊形是平行四邊形,面,又,是面內(nèi)的兩條相交直線, 故面面. (2)由(1)可知,兩兩垂直,故建系如圖所示,則,, 設(shè)是平面PAB的法向量,,令,則, 直線NE與平面所成角的余弦值為.【點(diǎn)睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.22 (1) 的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為. (2) 【解析】(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論