




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知,是雙曲線的兩個(gè)焦點(diǎn),過(guò)點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則的內(nèi)切圓的半徑為( )ABCD2已知,若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)( )A有最大值,無(wú)最小值B有最大值,有最小值C無(wú)最大值,有最小值D無(wú)最大值,無(wú)最小值3閱讀下側(cè)程序框圖
2、,為使輸出的數(shù)據(jù)為31,則處應(yīng)填的數(shù)字為A4B5C6D74某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為( )A100B1000C90D905已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則( )ABCD6已知若(1-ai )( 3+2i )為純虛數(shù),則a的值為 ( )ABCD7某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有( )種.A360B240
3、C150D1208復(fù)數(shù)滿足,則( )ABCD9如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是由一個(gè)棱柱挖去一個(gè)棱錐后的幾何體的三視圖,則該幾何體的體積為A72B64C48D3210若實(shí)數(shù)滿足的約束條件,則的取值范圍是( )ABCD11雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過(guò)點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為( )AB3CD212已知等差數(shù)列的前13項(xiàng)和為52,則( )A256B-256C32D-32二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)在處的切線方程是_.14已知等邊三角形的邊長(zhǎng)為1,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為_(kāi)15如圖,
4、兩個(gè)同心圓的半徑分別為和,為大圓的一條 直徑,過(guò)點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括 兩點(diǎn)),則的最大值是_16雙曲線的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且周長(zhǎng)的最小值為8,則雙曲線的實(shí)軸長(zhǎng)為_(kāi),離心率為_(kāi).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)在四棱錐中,底面為直角梯形,分別為,的中點(diǎn)(1)求證:(2)若,求二面角的余弦值18(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無(wú)解,求實(shí)數(shù)的取值范圍.19(12分)如圖,在四棱柱中,平面,底面ABCD滿足BC,且()求證:平面;()求直線與平面所成角的正
5、弦值.20(12分)在中,角,的對(duì)邊分別為, 且的面積為.(1)求;(2)求的周長(zhǎng) .21(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若關(guān)于的不等式的解集包含,求實(shí)數(shù)的取值范圍.22(10分)已知橢圓,過(guò)的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】設(shè)左焦點(diǎn)的坐標(biāo), 由AB的弦長(zhǎng)可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形
6、的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為: 所以,所以三角形ABF2的周長(zhǎng)為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長(zhǎng)周長(zhǎng)的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.2B【解析】判斷直線與縱軸交點(diǎn)的位置,畫(huà)出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目
7、標(biāo)函數(shù)最值是否存在問(wèn)題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.3B【解析】考點(diǎn):程序框圖分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過(guò)程中各變量的值的變化情況,不難給出答案解:程序在運(yùn)行過(guò)程中各變量的值如下表示: S i 是否繼續(xù)循環(huán)循環(huán)前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后當(dāng)i5時(shí)退出,故選B4A【解析】利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支
8、出在的同學(xué)的頻率為故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5B【解析】根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【點(diǎn)睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡(jiǎn)單題目.6A【解析】根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡(jiǎn)可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.7C【解析】可分成兩類,一類是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師
9、,分別計(jì)算后相加即可【詳解】分成兩類,一類是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類兩個(gè)老教師各帶兩個(gè)新教師,有共有結(jié)對(duì)方式6090150種故選:C【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類還是先分步,確定方法后再計(jì)數(shù)本題中有一個(gè)平均分組問(wèn)題計(jì)數(shù)時(shí)容易出錯(cuò)兩組中每組中人數(shù)都是2,因此方法數(shù)為8C【解析】利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解: ,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.9B【解析】由三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四
10、棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見(jiàn)輪廓線在三視圖中為實(shí)線,不可見(jiàn)輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。10B【解析】根據(jù)所給不等式組,畫(huà)出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【
11、詳解】實(shí)數(shù)滿足的約束條件,畫(huà)出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡(jiǎn)單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.11A【解析】設(shè),直線的方程為,聯(lián)立方程得到,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)椋詾榫€段的中點(diǎn),所以,整理得,故該雙曲線的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.12A【解析】利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,得.選
12、A.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13【解析】求出和的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】,則,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題.14【解析】根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解: 以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,則,設(shè), ,即點(diǎn)的坐標(biāo)為,則,所以故答案為:
13、【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.15【解析】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即 又平分,所以,則,設(shè),則,所以,所以,所以的最大值是.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問(wèn)題,同時(shí)考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.162 2 【解析】設(shè)雙曲線的右焦點(diǎn)為,根據(jù)周長(zhǎng)為,計(jì)
14、算得到答案.【詳解】設(shè)雙曲線的右焦點(diǎn)為.周長(zhǎng)為:.當(dāng)共線時(shí)等號(hào)成立,故,即實(shí)軸長(zhǎng)為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線周長(zhǎng)的最值問(wèn)題,離心率,實(shí)軸長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)見(jiàn)解析(2)【解析】(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角【詳解】(1)證明:連接,平面平面,平面平面,為的中點(diǎn),平面平面,平面平面,為斜邊的中點(diǎn),(2),由(1)可知,為等腰直角三角形,則以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,則
15、,記平面的法向量為由得到,取,可得,則易知平面的法向量為記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為【點(diǎn)睛】本題考查用面面垂直的性質(zhì)定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時(shí),可以建立空間直角坐標(biāo)系,用空間向量法求解空間角,可避免空間角的作證過(guò)程,通過(guò)計(jì)算求解18(1);(2).【解析】(1)只需分,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)時(shí),此時(shí)不等式無(wú)解;當(dāng)時(shí),由得;當(dāng)時(shí),由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時(shí),;當(dāng)時(shí),所以當(dāng)
16、時(shí),由得或,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法、不等式恒成立問(wèn)題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.19 () 證明見(jiàn)解析;()【解析】()證明,根據(jù)得到,得到證明.() 如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,計(jì)算向量夾角得到答案.【詳解】() 平面,平面,故.,故,故.,故平面.()如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,.設(shè)平面的法向量,則,即,取得到,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.20(1)(2)【解析】(1)利用正弦,余弦定理對(duì)式子化簡(jiǎn)求解即可;(2)利用余弦
17、定理以及三角形的面積,求解三角形的周長(zhǎng)即可【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2),所以,又,且 ,的周長(zhǎng)為【點(diǎn)睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計(jì)算能力,屬于基礎(chǔ)題.21(1)(2)【解析】(1)按進(jìn)行分類,得到等價(jià)不等式組,分別解出解集,再取并集,得到答案;(2)將問(wèn)題轉(zhuǎn)化為在時(shí)恒成立,按和分類討論,分別得到不等式恒成立時(shí)對(duì)應(yīng)的的范圍,再取交集,得到答案.【詳解】解:(1)當(dāng)時(shí),等價(jià)于或或,解得或或,所以不等式的解集為:.(2)依題意即在時(shí)恒成立,當(dāng)時(shí),即,所以對(duì)恒成立,得;當(dāng)時(shí),即,所以對(duì)任意恒成立,得,綜上,.【點(diǎn)睛】本題考查分類討論解絕對(duì)值不等式,分類討論研究不等式恒成立問(wèn)題,屬于中檔題.22(1)或;(2)見(jiàn)解析【解析】(1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《頸椎病課件》課件
- 我會(huì)排隊(duì)-幼兒園托班安全教育
- 安全教育體系標(biāo)準(zhǔn)化建設(shè)
- 2025年1月工業(yè)分析與檢驗(yàn)試題+參考答案解析
- 2024年1+x智能網(wǎng)聯(lián)??荚囶}+答案(附解析)
- 1+x網(wǎng)店推廣??荚囶}含答案(附解析)
- 《深入解讀安全生產(chǎn)禁令》課件
- 電機(jī)遠(yuǎn)程控制考核試卷
- 腈綸纖維在汽車內(nèi)飾中的應(yīng)用考核試卷
- 豬肉食品安全管理制度
- 成語(yǔ)故事《刻舟求劍》課件2
- 2014-2024年高考語(yǔ)文真題匯編之詩(shī)歌鑒賞含答案解析
- 49-提高臨邊防護(hù)欄桿有效合格率(清泉建筑)
- 鋁單板勞務(wù)分包合同
- CT室放射防護(hù)PDCA課件
- 2024年部編版八年級(jí)語(yǔ)文上冊(cè)電子課本(高清版)
- 企業(yè)間無(wú)償借款合同模板
- 生活水泵房管理制度
- 初三班級(jí)學(xué)生中考加油家長(zhǎng)會(huì)課件
- 外包加工安全協(xié)議書(shū)
- 圍手術(shù)期患者低溫防治專家共識(shí)(2023版)解讀課件
評(píng)論
0/150
提交評(píng)論