2021-2022學年安徽省亳州市創(chuàng)新中學高三數(shù)學理期末試卷含解析_第1頁
2021-2022學年安徽省亳州市創(chuàng)新中學高三數(shù)學理期末試卷含解析_第2頁
2021-2022學年安徽省亳州市創(chuàng)新中學高三數(shù)學理期末試卷含解析_第3頁
2021-2022學年安徽省亳州市創(chuàng)新中學高三數(shù)學理期末試卷含解析_第4頁
2021-2022學年安徽省亳州市創(chuàng)新中學高三數(shù)學理期末試卷含解析_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022學年安徽省亳州市創(chuàng)新中學高三數(shù)學理期末試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是A. 90 B. 129 C. 132 D. 138參考答案:D2. 右圖為一正方體的平面展開圖,在這個正方體中,有以下結(jié)論 CF與EN所成的角為60BD/MN 二面角的大小為45其中正確的個數(shù)是( )A.1 B.2 C.3 D.4參考答案:C3. 已知,表示兩個不同的平面,為平面內(nèi)的一條直線,則“”是“”的( )A.充分不必要條件 B.必要不充分條件 C.充要

2、條件 D.既不充分也不必要條件參考答案:B4. 等差數(shù)列an的前n項和為Sn,若=,則下列結(jié)論中正確的是()A =2B =C =D =參考答案:C【考點】85:等差數(shù)列的前n項和【分析】由等差數(shù)列的求和公式和性質(zhì)可得=3?=2,解方程可得【解答】解:等差數(shù)列an的前n項和為Sn,且=,=2,由等差數(shù)列的求和公式和性質(zhì)可得:=3?=2, =故選:C【點評】本題考查等差數(shù)列的求和公式和性質(zhì),屬基礎題5. 在復平面內(nèi),復數(shù)對應的點與原點的距離是 、 、 、 、參考答案:B6. 執(zhí)行如圖所示的程序框圖,輸出S的值為 A.3 B. -6 C. 10 D. 12參考答案:7. 設函數(shù)若關(guān)于x的方程有四個不

3、同的解且則的取值范圍是 A. B. C.(1,+) D.參考答案:A8. 某空間幾何體的三視圖如圖所示,則該幾何體的體積為( ) A. 10B. 5C. 20D. 30參考答案:C【分析】根據(jù)三視圖畫出幾何體的直觀圖:三棱柱截去一個三棱錐,利用棱柱與棱柱的體積公式即可求解.【詳解】由幾何體的三視圖可得幾何體的直觀圖:三棱柱截去一個三棱錐,如圖: 該幾何體的體積:.故選:C【點睛】本題考查了由三視圖求幾何體的體積、棱柱的體積公式、棱錐的體積公式,考查了學生的空間想象能力,屬于基礎題.9. 若函數(shù)f(x)=ln(x2+1)的值域為0,1,2,從滿足條件的所有定義域集合中選出2個集合,則取出的2個集

4、合中各有三個元素的概率是()ABCD參考答案:A【考點】列舉法計算基本事件數(shù)及事件發(fā)生的概率【分析】由ln(x2+1)等于0,1,2求解對數(shù)方程分別得到x的值,然后利用列舉法得到值域為0,1,2的所有定義域情況,則滿足條件的函數(shù)個數(shù)可求,由此利用等可能事件概率計算公式能求出取出的2個集合中各有三個元素的概率【解答】解:令ln(x2+1)=0,得x=0,令ln(x2+1)=1,得x2+1=e,x=,令ln(x2+1)=2,得x2+1=e2,x=則滿足值域為0,1,2的定義域有:0,0, ,0,0, ,0,0, ,0, ,0, ,0, 則滿足這樣條件的函數(shù)的個數(shù)為9從滿足條件的所有定義域集合中選出

5、2個集合,基本事件總數(shù)n=,取出的2個集合中各有三個元素的函數(shù)個數(shù)為m=,取出的2個集合中各有三個元素的概率是p=故選:A10. 定義在R上的奇函數(shù)f(x),當x0時,f(x)=,則關(guān)于x的函數(shù)F(x)=f(x)a(0a1)的所有零點之和為()A3a1B13aC3a1D13a參考答案:B【考點】函數(shù)的零點與方程根的關(guān)系【專題】函數(shù)的性質(zhì)及應用【分析】利用奇偶函數(shù)得出當x0時,f(x)=,x0時,f(x)=,畫出圖象,根據(jù)對稱性得出零點的值滿足x1+x2,x4+x5的值,關(guān)鍵運用對數(shù)求解x3=13a,整體求解即可【解答】解:定義在R上的奇函數(shù)f(x),f(x)=f(x),當x0時,f(x)=,當

6、x0時,f(x)=,得出x0時,f(x)=畫出圖象得出:如圖從左向右零點為x1,x2,x3,x4,x5,根據(jù)對稱性得出:x1+x2=42=8,x4+x5=24=8,log(x3+1)=a,x3=13a,故x1+x2+x3+x4+x5=8+13a+8=13a,故選:B【點評】本題綜合考察了函數(shù)的性質(zhì),圖象的運用,函數(shù)的零點與函數(shù)交點問題,考查了數(shù)形結(jié)合的能力,屬于中檔題二、 填空題:本大題共7小題,每小題4分,共28分11. 復數(shù),則 參考答案:12. A,B為單位圓(圓心為O)上的點,O到弦AB的距離為,C是劣?。ò它c)上一動點,若 ,則的取值范圍為_.參考答案:【分析】以圓心為坐標原點建

7、立直角坐標系,設,兩點在 軸上方且線段 與 軸垂直,分別表示出,兩點的坐標,求出 、向量,即可表示出向量,由于是劣?。ò它c)上一動點,可知向量橫縱坐標的范圍,即可求出的取值范圍?!驹斀狻咳鐖D以圓心為坐標原點建立直角坐標系,設,兩點在 軸上方且線段 與 軸垂直, ,為單位圓(圓心為)上的點,到弦的距離為, 點 ,點,即,又是劣弧(包含端點)上一動點, 設點坐標為, , ,解得: ,故的取值范圍為【點睛】本題主要考查了向量的綜合問題以及圓的基本性質(zhì),解題的關(guān)鍵是建立直角坐標系,表示出各點坐標,屬于中檔難度題。13. (5分)如圖,在矩形中,點為的中點,點在邊上,若,則的值是 參考答案:?!究键c

8、】向量的計算,矩形的性質(zhì),三角形外角性質(zhì),和的余弦公式,銳角三角函數(shù)定義。由,得,由矩形的性質(zhì),得。 ,。 記之間的夾角為,則。 又點E為BC的中點,。 。 本題也可建立以為坐標軸的直角坐標系,求出各點坐標后求解。14. 已知向量、滿足,且,則_.參考答案:15. 雙曲線的一個焦點到其漸近線的距離是,則 ;此雙曲線的離心率為 參考答案:2, .16. 在區(qū)間0,9上隨機取一實數(shù)x,則該實數(shù)x滿足不等式的概率為_參考答案:17. 已知函數(shù)(e是自然對數(shù)的底).若函數(shù)的最小值是4,則實數(shù)a的取值范圍為 參考答案:當時, (當且僅當時取等號),當時, ,因此 三、 解答題:本大題共5小題,共72分。

9、解答應寫出文字說明,證明過程或演算步驟18. (本小題滿分14分)已知等差數(shù)列的公差,設的前項和為,(1)求及;(2)求()的值,使得.參考答案:(1)由題意,將代入上式得或,因為,所以,從而,().(2)由(1)知,所以,由知,所以,所以.19. (本小題12分)已知橢圓的中心在坐標原點,焦點在軸上,離心率.直線:與橢圓相交于兩點, 且.()求橢圓C的方程;()點、為橢圓上異于的動點,當時,求證:直線恒過一個定點.并求出該定點的坐標.參考答案:解答:()設橢圓方程為(ab0),由令則, 。2分由得:, 5分橢圓C的方程是:。6分() 當直線AB不垂直于x軸時,設:得, ,。8分當時,恒過定點

10、;當時,恒過定點,不符合題意舍去10分當直線垂直于軸時,若直線:,則與橢圓相交于,。,滿足題意。綜上可知,直線恒過定點,且定點坐標為.12分 略20. 已知數(shù)列an是各項均不為0的等差數(shù)列,公差為d,Sn 為其前n項和,且滿足an2=S2n1,nN*數(shù)列bn滿足bn=,Tn為數(shù)列bn的前n項和(1)求數(shù)列an的通項公式和Tn;(2)是否存在正整數(shù)m,n(1mn),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由參考答案:考點:數(shù)列的求和;等差數(shù)列的前n項和;等比關(guān)系的確定 專題:計算題;等差數(shù)列與等比數(shù)列分析:()(法一)在an2=S2n1,令n=1,n=2,結(jié)

11、合等差數(shù)列的通項公式可求a1=1,d=2,可求通項,而bn=,結(jié)合數(shù)列通項的特點,考慮利用裂項相消法求和(法二):由等差數(shù)列的性質(zhì)可知,=(2n1)an,結(jié)合已知an2=S2n1,可求an,而bn=,結(jié)合數(shù)列通項的特點,考慮利用裂項相消法求和()由(I)可求T1=,Tm=,Tn=,代入已知可得法一:由可得,0可求m的范圍,結(jié)合mN且m1可求m,n法二:由可得,結(jié)合mN且m1可求m,n解答:解:()(法一)在an2=S2n1,令n=1,n=2可得即a1=1,d=2an=2n1bn=()=(1)=(法二)an是等差數(shù)列,=(2n1)an由an2=S2n1,得an2=(2n1)an,又an0,an=2n1bn=()=(1)=()T1=,Tm=,Tn=若T1,Tm,Tn,成等比數(shù)列,則即法一:由可得,0即2m2+4m+10mN且m1m=2,此時n=12當且僅當m=2,n=12時,T1,Tm,Tn,成等比數(shù)法二:2m24m10mN且m1m=2,此時n=12當且僅當m=2,n=12時,T1,Tm,Tn,成等比數(shù)點評:本題主要考查了等差數(shù)列的性質(zhì)、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論