版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1Digital Logic Design and ApplicationJin YanhuaLecture #7Other CMOS Input and Output StructuresBasic Logic AlgebraUESTC, Spring 2014Jin. UESTC2答疑安排第317周周二 3、4節(jié),7、8節(jié)周四 3、4節(jié)周五 1、2節(jié)A教1樓教室休息室 電梯/(A102)旁邊或2樓 A202旁邊的教師休息室Jin. UESTC3Last TimeOther CMOS Input and Output StructruesENEN_LABSchmitt-Trigger Inp
2、utsVOUTVIN5.02.12.95.0VT+VT-Transmission GatesAENOUTThree-State OutputsJin. UESTC44. Open-Drain OutputsABZVCCVCCR pull-up resistanceABZLogic SymbolAs small as possible, to minimize the rise time. Cannot be arbitrarily small, it is determined by IOLmaxpassive pull-up無源上拉Applications: driving multisou
3、rce buses; driving LEDs; performing wired logic. Jin. UESTC5Driving LEDsVOLmaxILED = 10 mAJin. UESTC6Multi-source BusesJin. UESTC7輸出電平?造成邏輯混亂很大的負載電流同時流過輸出級可使門電路損壞VCCAZactive pull-up有源上拉VCCB低高有源上拉的CMOS器件其輸出端不能直接相聯(lián)1001M1001MJin. UESTC8Wired Logic of Open-Drain OutputsABZVCCVCCRCDVCCZ = Z1 Z2 = (AB) (C
4、D) = (AB + CD)Z1Z2Wired AND (線與) 第4章 反演定理 Jin. UESTC93.8 CMOS Logic FamiliesElectrical Characteristics (P.144-147 Table3-5/6/7)Symmetric output drive: output can sink or source equal amounts of current.Jin. UESTC103.9 Low-Voltage CMOS Logic and InterfacingP.152 Figure 3-62P.155 3.9.4 SummaryJin. UES
5、TC11TTL Logic FamiliesTTL Logic Levels and Noise MarginsTTL fanoutAsymmetric output drive A TTL Data Sheet P167 Table3-10IILmax=0.4 mA IIHmax=20 uAIOLmax=8 mA IOHmax=400 uAJin. UESTC12CMOS/TTL InterfacingConsider: Noise Margin, Fan-out, Capacitance LoadsabnormalVOLmax0.5VOHmin2.7VIHmin2.0VOLmax0.8TT
6、LabnormalVOLmax0.33VOLmax0.8VIHmin2.0VOHmin3.84CMOS74HCT driving 74LS H-state: |VOHmin VIHmin| = 1.84V L-state: |VOLmin VILmin| = 0.47V74LS driving 74HCT High: 2.7 2.0 = 0.7V Low: | 0.5 0.8 | = 0.3VJin. UESTC13Logic Families3.8 CMOS FamiliesHC, HCTHigh-speed CMOSTTL compatibleVHC, VHCT (very)AHC, AH
7、CT (advanced)FCT, FCT-T3.10.6 TTL FamiliesH (high-speed)S (Schottky)L, LS (low-power)A, AS, ALS (advanced) F (fast)7454Part Number: FAM nn function Jin. UESTC14Review of Chapter 3Logic Signals and GatesPositive Logic and Negative LogicBasic building blocks AND, OR, NOTCMOS LogicInverter, NAND, NOR,
8、AND-OR-INVERTFan-in, non-inverting GatesSteady-State Electrical BehaviorLogic levels and noise marginsEffects of loading, Nonideal inputs, Unused InputsJin. UESTC15Review of Chapter 2Steady-State Electrical BehaviorCurrent Driving CapabilityDynamic Electrical BehaviorSpeed and Power ConsumptionOther
9、 CMOS Input and Output StructuresTransmission Gates, Schmitt-Trigger InputsThree-State Outputs, Open-Drain OutputsLogic Family: CMOS and TTLResistive LoadsGate Loads, Fanout16Jin. UESTCChapter 4 Combinational Logic Design PrinciplesBasic Logic AlgebraCombinational-Circuit AnalysisCombinational-Circu
10、it SynthesisDigital Logic Design and ApplicationJin. UESTC17Basic ConceptsTwo types of logic circuits:combinational logic circuitsequential logic circuitOutputs depend only on its current inputs.Outputs depends not only on the current inputs but also on the past sequence of inputs.A combinational ci
11、rcuit dont contain feedback loops which generally create sequential circuit behavior.Jin. UESTC184.1 Switching Algebra4.1.1 AxiomsX = 0, if X 1X = 1, if X 00 = 11 = 000 = 01+1 = 111 = 10+0 = 001 = 10 = 01+0 = 0+1 = 1F = 0 + 1 ( 0 + 1 0 ) = 0 + 1 1= 0a.k.a. “Boolean algebra”Jin. UESTC194.1.2 Single-V
12、ariable TheoremsIdentities(自等律): X+0=XX1=XNull Elements(0-1律): X+1=1X0=0Involution(還原律): ( X ) = XIdempotency(同一律): X+X=XXX=XComplements(互補律): X+X=1XX=0The relationship between variable and constantThe relationship between variable and itselfJin. UESTC204.1.3 Two- and Three-Variable TheoremsSimilar
13、relationships with general algebraCommutativity (交換律) AB = BAA+B = B+AAssociativity (結合律) A(BC) = (AB)CA+(B+C) = (A+B)+CDistributivity (分配律) A(B+C) = AB+BCA+BC = (A+B)(A+C) Proved by truth table.Jin. UESTC21Notices允許提取公因子 AB + AC = A(B+C)不存在變量的指數(shù) AAA A3沒有定義除法 if AB=BC A=C ? 沒有定義減法 if A+B=A+C B=C ?A=
14、1, B=0, C=0AB=AC=0, ACA=1, B=0, C=1錯!錯!Jin. UESTC224.1.3 Two- and Three-Variable TheoremsCovering (吸收律)X + XY = X X(X+Y) = XCombining (組合律)XY + XY = X (X+Y)(X+Y) = XConsensus (添加律/一致性定理)XY + XZ + YZ = XY + XZ(X+Y)(X+Z)(Y+Z) = (X+Y)(X+Z)Some Special Relationships 對偶 Jin. UESTC23對上述的公式、定理要熟記,做到舉一反三 (X
15、+Y) + (X+Y) = 1A + A = 1XY + XY = X(A+B)(A(B+C) + (A+B)(A(B+C) = (A+B)代入定理: 在含有變量 X 的邏輯等式中,如果將式中所有出現(xiàn) X 的地方都用另一個表達式 F 來代替,則等式仍然成立。Jin. UESTC24To prove: XY + XZ + YZ = XY + XZYZ = 1YZ = (X+X)YZXY + XZ + (X+X)YZ= XY + XZ + XYZ +XYZ= XY(1+Z) + XZ(1+Y)= XY + XZJin. UESTC254.1.4 n-Variable TheoremsGeneral
16、ized idempotency theorem 廣義同一律X + X + + X = X X X X = XShannons expansion theorem 香農(nóng)展開定理F(X1, X2, , Xn)= X1 F(1,X2,Xn) + X1 F(0,X2,Xn)= X1 + F(0,X2,Xn) X1 + F(1,X2,Xn) Jin. UESTC26To prove: AD + AC + CD + ABCD = AD + AC= A ( 1D + 1C + CD + 1BCD ) + A ( 0D + 0C + CD + 0BCD )= A ( D + CD + BCD ) + A (
17、 C + CD )= AD( 1 + C + BC ) + AC( 1 + D )= AD + ACJin. UESTC274.1.4 n-Variable TheoremsDeMorgans Theorem 摩根定理 Complement Theorem 反演定理 (A B) = A + B(A + B) = A B回顧線與Jin. UESTC28DeMorgan SymbolsJin. UESTC294.1.4 n-Variable TheoremsComplement of a logic expression: , 0 1, Complementing all VariablesKee
18、p the previous priorityNotice the out of parenthesesExample1: Write the complement function for each of the following logic functions.F1 = A(B+C)+CDF2 = (AB)+CDE 合理地運用反演定理能夠將一些問題簡化 Example2: Prove that (AB + AC) = AB + ACJin. UESTC30Example1: Write the complement function for each of the following l
19、ogic functions.F1 = A(B+C)+CDF2 = (AB)+CDEF1 = (A+BC)(C+D)F2 = (A+B)(C+D+E)F2 = AB(C+D+E)AB + AC + BC = AB + AC(A+B)(A+C)AA +AC + AB + BCAC + AB AC + AB + BCExample2: Prove (AB + AC) = AB + ACJin. UESTC314.1.5 DualityDuality Rule , 0 1 Keep the previous priorityExample: Write the Duality function fo
20、r each of the following Logic functions. F1 = A+B(C+D) F2 = ( A(B+C) + (C+D) )X(X+Y) = X FD(X1 , X2 , , Xn , + , , ) = F(X1 , X2 , , Xn , , + , ) 回顧公理、定理Counterexample: X+XY = XXX+Y = X X+Y = XJin. UESTC324.1.5 DualityDuality Rule , 0 1Keep the previous priorityPrinciple of Duality Any logic equatio
21、n remains true if the duals of it is true. To prove: A+BC = (A+B)(A+C)A(B+C)AB+ACJin. UESTC33Example: Write the Duality function for each of the following Logic functions. F1 = A+B(C+D)F2 = ( A(B+C) + (C+D) )F1D = A(B+CD)F2D = ( (A+BC) (CD) )Jin. UESTC34Duality and ComplementDuality: FD(X1 , X2 , ,
22、Xn , + , , ) = F(X1 , X2 , , Xn , , + , ) Complement: F(X1 , X2 , , Xn , + , ) = F(X1 , X2, , Xn , , + ) F(X1 , X2 , , Xn) = FD(X1 , X2, , Xn ) The relation between the positive-logic convention and the negative-logic convention is duality.Jin. UESTC35The relation between the positive-logic conventi
23、on and the negative-logic convention is duality.G1ABFA B FL L LL H LH L LH H Helectrical functionA B F0 0 00 1 01 0 01 1 1positive logicA B F1 1 11 0 10 1 10 0 0negative logicF = ABF = A+BJin. UESTC36More definitionsLiteral: a variable or its complement such as X, X, CS_LExpression: literals combined by AND, OR, parentheses, complementation( FREDZ + CS_LABC + Q5 )RESET Product term: PQRSum term: X+Y+ZSum-of-products expression: A + BC + ABC Product-of
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度職工住房借款與社區(qū)養(yǎng)老配套服務協(xié)議3篇
- 二零二五年度吊裝工程安全評估與監(jiān)督管理合同2篇
- 2025年辦公家具回收利用與環(huán)保處理合同3篇
- 極簡市場營銷(杰瑞20231224)
- 二零二五年度花椒采摘與旅游融合發(fā)展合同3篇
- 2024年陽泉煤業(yè)(集團)有限責任公司總醫(yī)院三礦醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年河南水利與環(huán)境職業(yè)學院高職單招數(shù)學歷年參考題庫含答案解析
- 2024年河北機電職業(yè)技術學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 二零二五年度美食街攤位租賃及廣告投放合同3篇
- 2024年江蘇財經(jīng)職業(yè)技術學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 2024年石家莊正定國際機場改擴建工程合同
- 2025年度愛讀書學長定制化閱讀計劃合同2篇
- 河南省信陽市浉河區(qū)9校聯(lián)考2024-2025學年八年級上學期12月月考地理試題(含答案)
- 快速康復在骨科護理中的應用
- 國民經(jīng)濟行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護理
- 公司收購設備合同范例
- 廣東省潮州市2023-2024學年高二上學期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項目EPC總包合同
- 試卷(完整版)python考試復習題庫復習知識點試卷試題
- GB/T 44679-2024叉車禁用與報廢技術規(guī)范
評論
0/150
提交評論