




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、實驗2-3實驗?zāi)康模篈RMA模型識別及估計與應(yīng)用(ADF檢驗、Q統(tǒng)計量、ACF、PACF)、ECM模型 建模、VAR模型建模檢驗與應(yīng)用、離散選擇模型建模估計與檢驗案例分析案例1中國支出法GDP的ARMA( p,q)模型估計中國支出法GDP是非平穩(wěn)的,但它的一階差分是平穩(wěn)的,即支出法GDP是1(1)時間序列??梢詫?jīng)過一階差分后的GDP建立適當?shù)腁RMA(p,q)模型。GDP單整性檢驗首先檢驗19782000年間中國支出法 GDP時間序列的平穩(wěn)性,即原序列的平穩(wěn)性。用 Eviews同時估計出 上述3個模型的適當形式。只要其中有一個模型的檢驗結(jié)果拒絕了零假設(shè),就可以認為時間序列是平穩(wěn)的, 當3個模
2、型的檢驗結(jié)果都不能拒絕零假設(shè)時,則認為時間序列是非平穩(wěn)的。Eviews中,GDP平穩(wěn)性的ADF檢驗卞II型3、2、1的檢驗結(jié)果如下:Edit Object View Proc Quick Options Window Help.V近刃.Pmc. 0bject|Properties! .Print| .Stmplc|Genr|Bhcet.GraphStatsAugmented Dickeyuller Unit Root Test on GDPNull Hypothesis GDP has a unitrustExogenous: Constant. Linear TrendLag Length-
3、 2 (Automatic based on SIC, MAXLAG=4)t-StatisticProb/Aijpmnted 口i&依丫-Fu帕r test statistic口 31459S。9972Test criticml values: 1 % level-4 4983075% level-3.659410% level-3 268973*MacKinnon (1996) one-sided p-valuesAugmented Dickey-Fuller Test Equation Dependent Variable: D(GDP) Method. Least SquaresDate
4、 04 17/13 Time: 19:55Sample (adjusted) 1981 2000Included observations 20 after adjustmentsCoefficientStd Errort-StatisticProbGDP(-1)0 0092970 0295510 314596。了 574D(GDP(-1)1.4992970.1675728.9471640 0000D(GDP(-2)-1 0071780203389-4 9519730 0002C-1010.949805 4085-1.2552000 2286TREND(1978)229 1858120 137
5、81 9076910 0758R-squared0 941778Mean dependent var4228 060Adjusted R-squared0.926252S.D dcpEndcrrt va 1r3774.652S E of negression1025 064Akaike info citeion16,91622Sum 領(lǐng)間印resid15761356Schwarz criterion17.164115Log likelihood-164 1522Hannan-Quinn crit6r1696381MiawObjectProperties |Print.Hama|FraHza|
6、|Sample雇nr|shet.Graph|StateAugmented Dickey-Fuller Unit Root Tt on GDPNull Hypothesis GDP has a unit rootExogenous: ConstantLag Length 2 (Aulomatic based on SIC. MAXLAG=4)t-StatisticProb.*Augmented Dickey-Fuller test statistica3845321.0000Test critical va ues1 % level5% level 10% level-3.906546-3.02
7、0686-2.650413MacKinnon (1&96) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable D(GDP)Method: Least SquaresDate 04/1W3 Time IS 56Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsCoefficientStd. Errort-StatisticProb.GDP(*1)0 0571300.0168803.384532U.003SD
8、(GDP-1)16521430.15885310.400460 0000D(GDP(-2)-1 15026B0204051-5 637156OQOOQC357.3266395.46400.9035630379GR-squared0.927652Mean dependent var4228.0OAdjusted R-squared0.914067S.D dependent var3774.652S E of r地曰 sig1106 384Akaike info criterion17,03244Sum squared restd195853的Schwarz crrtenor17 2315gLog
9、 likelihood-166 3244Hannan-Quinn enter1707131F-ststistic晚3&蝴6Durbin*Watson stat2.241361Yisw J Proc ObjBcti1ropBrtiBS | | Print | Hama | Frame | SampleGenr | Sha團gph隔ateAugmnt&d Dick&y-Fuller Unit Root Test on GDPNull Hypothesis: GDP has a unit rootExogenous NoneLag Length: 2 (Automatic based on SIC.
10、 MAXLAG-4)(StatisticProb *Auqmenled Dickev-Fuller test statistic4 1472210 9999Test critical values: 1% level-2.6857185% level-1 95907110% level-1.607456,MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependenl Variable D(GDP)Method: L&ast SquaresDale 04/17/13 Time 19 59Sa m
11、 pie (adj usted): 1991 2000Irvluded observatione 20 after adjustmerrtsCoefficient Std Error t-Statistic Prob.GDP(-I)D(GDP(-1) DfGDP 0.0634231 701430 1.1910440 0152934.147221Q1433B611.466210197143605C7 貂0.00070 00000.0000R-squared0.923961Mean dependent var4228 060Adjusted R-squared0 915015S.D. depnde
12、nt var3774.652S.E. of regression1100.3MAkaike info criterian1690221Sum squared resid20584734Schwarz criterion17.13156Log likelihood-106 3221Hannan-Quinn criter17 01136Durbin-Watson stat2.250949根據(jù)3個模型檢驗結(jié)果。統(tǒng)計量都大于臨界值(左側(cè)單尾),因此在行0.05的顯著性水平下,接受原假 設(shè),即GDP序列存在單位根,是非平穩(wěn)序列。進一步對一階差分后的序列檢驗判斷GDP是否是一階單整序列,即1(1)。對GD
13、P 一階差分后序列進行 ADF檢驗,首先采用模型 3進行檢驗,檢驗結(jié)果為:Augmented Dickey-Fuller Unit Root Test on 口(GDPNull Hypothesis D(GDP) has a unit rootExogenous Constant Linear TrendLag Lengtti: 1 (Automatic based on SIC. MAXLAG =4)t-StatisticProb 7AuqmateJ 口ickey-Ful& 3t statistic-5 儂232口。睦Test c rttical values:1 % level4.4g的0
14、75% level-3.656446m level-3.2669731 MacKinnon (193S) one-sided p-valuesAugmented Dickey-Fuller Test EquationDependent Variable: D(GDP:2)Method Least SquaresDate- 04/17/13 Time: 20:05Sample (adjusted): 1981 2000Included observations: 20 3fter adjustmentsCoefficient Std. Error l-Statistic ProbD(GDP(-1
15、)-0.4940930.095480-5.1B32320.0001D(GDP(-1),2)Q965G310 1502625 4263210Q000C-1177 234590.3404-1.9941610 0635TREND(1978)261 2M261,762844 2299590.0006Rsqjared0.750206Mean dependent var2 的.1050Adjusted R-squared0 7033695 D dependent var1828 339S.E. of regression99E.7S33Akauke info cnterion16 32179Sum squ
16、ared resid15865MgSchwarz criterion17,02094Log likelihood-164 2179Hannan-Quinn criter16 96067F-statistic16 01755Durbin-Watson stat2.212567由于。=-5.183232p時,rj漸近服從如下正態(tài)分布:rk*N(0,1/n),因此,如果計算的 rk*2以后,r;| r&ca或 | State Resids;m- Equation; UNTITLED Workfile: CONS_GDP;lJLLL o_View Proc Object PrirU MartieFre
17、e Estitnaba | Forecast StMs ;Resids.Dependent Variable GDPDlMeUiod: Least SquaresDate. 04/17/13 Time, 2,0:41Sample (adjusted. 1981 2000Included observations. 20 after adjustmentsCorwergence achieved after 3 iterationsDependent Variable. GDPD1Method. Least SquaresDate 04/17/13 Time 20:42Sample (adjus
18、leJ- 1991 2000Included dbsetvaticins 20 after adjustmensCoefficient Std Error ( Statistic PnobCoefficient Std Error t-Statistic PrabAR(1)1 5927010 2013227.9116140 OOMAR(2)4)652666O2OJ633-3.2051140 0049C909.5563457.79741.9B6B10O.OGSSGDPD1(-1)1,4947640.1930327.743S900.0000GDPDl (-2)-0.6779650.13919395
19、a34620 0023R-squaredO.B47029Mean dependent var422S.060Adjualed R-squaredO.B3B531S.D. dependent var3774.652S.E. o( regression1516.776Akaike irtfo criterian17.58120Sum squared resid41410964 Schwarz critenori17.6807?Log likelihood-173.SI 20 Hannan Quinn criter.17,6006Durbin-Watson sial 1 14 9667R-squar
20、ed0,375S56Mean dependent vsr4228.060Adjusted R-squared0.861251S.D. dependent var377.652S.E of regression1406 023 AXaik&info criterion17 47240Surn squared resid33607319Schwarz criterion17 62176Log UkelihQQd-171.724QHann即-Quinn criter17 5(HMF-st?tistic59.96078Durbin-Watson 煢磯1 220600Prob(F-siaiistic)O
21、.DOOOOOInverted AR Roots80- 14iSQ+ Hi令3個模型的殘差序列分別為:e1、e2、e3,檢驗是否為白噪聲序列: Series: El Workfile: CONS_GDP:UntitledVtew procobjl1ropwttiM| 卜忖hMftGraph stCorrelogram of E1Date 04/17/13 Urne- 20 6Sample: 197S 2000Included observations. 20LJ Series: E2 Workfile: CONS_GDP:UntitledVewjproc| ObjectProperties |
22、Fnnttame|Freeze| |Sampta|Gmu|5hwtGraph|每向Corrvlogram of EfDate: 04717/1S Time: 20:4Sample 1978 2000Included obsen/stions 20AutocorrelationPartial CorrelationAC PAC Q-Stal Prob1口1n1 0.3fi2 0.382 3.嫻R 0.066111匚12 0.013 -0.155 3.3S921匚11 13 -0.133 -0.096 3.8473 0 2781匚11 二14 -0.342 -0.299 7.0557 0.1331
23、匚II115 -0.171 0.079 7 9122 0.1611ZI 11二 16 0.253 0340 9.9297 0.1281 11匚17 0 H4 -0 180 10.635 0.1S511 i1 18 0 057 -0.063 10,753 0.2161li1 19 -Q 019 -Q 045 10 768 Q 2921匚I1口 iw -Q 146 0啊 11 705 口 3051匚H1匚i11 -0232 -0 189 14 342 02151n1l12 -0(M9 -0 044 14 473 0 272AntacorrelatiQn Partial CorrelaitonAC
24、PAC Q-Srat Probii匚 i匚11匚111111 1 11 11Zl 13 113 iIP )i i 口i I 11111 1111 1111 025B Q25B 1 &403 0215 2 -Q139 -0 220 2 0106 03C6 3 -024 -0164 3.5721 0312 4 0 529 4X511 11 273 0024 5 -0300 -0.204 13.916 0.016 6 0,270 0213 16.215 0.013 70,158-0.24717.0610.01780,115-0.18017.550002590097-0.14317 923003610
25、-0.0360.18117 9790.05511 -0.136 -0103 1&8& 0.063 12 0,064 -O.ODB 19.113 0.066口&祀-M,17; 13 Time- 2046Sample. 1978 2000Included observations 20Autocorrelation Partial Correlation AC PAC Q-Stal Prob1 口 1l 1 0.257 0257 1.5290 0.216I (1 112 -OgQ -0 113 1 5674 0 157 1113 -0.059 -0.020 1.8583 0.646ICZ11 二1
26、4 -0 328 -0 337 46240 0 32B1 c1115 -0.1* 0 026 5 25M 0 3S21n1Il6 0,345 0 398 9.036A 0 1721 11 t17 0155 -0 070 9 8515 0.197111 018 0076 -0 037 1 0.064 0 2611i1 19 0,011 -0 089 10069 0 3451匚l1 1IQ -0.123 0 180 10 733 0 3791匚i1匚111 230 -0 161 13 325 0 2731l i112 -0 012 -0 061 13 333 0.345觀察Q統(tǒng)計量和相應(yīng)的概率值發(fā)
27、現(xiàn),模型(1)與模型(1)的殘差項接近于一白噪聲,但模型(2)存在4階滯后相關(guān)問題,Q統(tǒng)計量的檢驗也得出模型 2拒絕所有自相關(guān)系數(shù)為零的假設(shè)。因此:模型1與3可作為描述中國支出法 GDP 一階差分序列的隨機生成過程。ARMA( p,q)模型應(yīng)用用建立的AR(2)模型對中國支出法 GDP進行外推預(yù)測:模型(1)可作如下展開:GDP _GDPt=?(GDPt一GDPy) +%(GDPtq -GDPt)GDR =(1+*)GDR4+ d2 平1)GDP %GDPt 二如果已知t-1、t-2、t-3期的GDP時,就可對第t期的GDP作出外推預(yù)測。模型(3)也可展開,但多出一項常數(shù)項。Eviews中,對
28、樣本外一點的預(yù)測,如果該樣本點已超過workfile的樣本范圍,則需要調(diào)整樣本區(qū)間,操作如下:點擊工作文件的 Proc選項卡,選擇Structure/Resize Current Page”選項,宜 EViews| File_Edit Object View Proc Quick Options Window Hseries e3-residO Workfile: CONS_GDF - (c:utersthinkpadde. I o F-a |j|wwIproc|;QbjMt| |pnnHsawejptallat/-:忖how |?而旬又附心值想anlM cc1口出由出,ir3Fe,E 曰出出
29、Rss回0回回回0回回回回=1回回Set Sample.Stmcture/Resize Current Page. Append to Current Page Contract Current Page., Reshape Current Page Copy/Extract from Current Page Son Current ”Laad Workfile Page 5ave Current Page.Rename Current Page.Delete Current PageImport txportsidDisplay Fit會出現(xiàn)如下對話框:點擊OK確定,則:隹I EViews
30、File Edit Object View Proc Quick Options Window 卜 senes e3=resid Workfile: CONS_GDP - (c:usersthinkpadde. gview Iftqc 匕國ct. Print 58聘網(wǎng)&佰鏟 show fetch 5用胎| elate GenDisplay FRange 1979 2001 - 24 obsSample 1978 2001 - 24 obs回 eq_ci=eq_ecrnE gdp=gdp_acff3g S-1 2 3d deee6 21eii gdp_d1_acf_pacf 0gdpdl-l=-
31、 gdpdl _1_acf_q 世 gd 口 dLZacf.q 世 gdpdlafq =1= gdpdl _acf_pacf =gdpdl ar工作文件樣本區(qū)間擴大到 2001年。模型(1)的預(yù)測:國 EViewsFile Edit Object View Proc Quick Options Window Helpseries e3=residseries gd pf_1 =2 239 gdp (-1 HO,442+1,239)*gdp(-2)+0.442*gdp(-3)Series: GDPF_1 Workfile: |viewpnc|obj&dpnoperfes fFrinRange 1
32、978 2001Sample: 1979 2001-24 obs-24 0bsDisplay Fil,回c回 eq_ci國 grojpO2S cons=eq ecm0 Icons回 cons_gdp_4S gdp01gdpHdconsigdp_adf30 residSdgdpgdp_dl_acf_pacf國 dgdp_a3 gdpdtSeikii gdpd7 1 acf qSe2Wk qdpdl 2 acf qSe3建 gdpdl 3 acf q0eci耀 gdpd1_acf_pacfSecil回gdpdl ar回 eqOlSgdpd1f3叵|eq02s5EM國 eq030 gdpf_3H e
33、q04回 graupOlO Workfile: CONS_GDP (c:usersthinkpadde. | 0口bjSCt ; Det祈信+廣j 5 Mw 除岫 :gletg |Genr* h Untitled 卜 Wvv Pagv/19858253.0581&8610327 69198711074 49193S13236,81198917590 87199017358.791&9119837 19199224129 711&9330233.691G94431761219955797豆 56199667767.25199775272.901&9878636 35199931193 28200
34、085403 7620D195468 86模型(3)的預(yù)測: WorkHle: CONS_GDP - (c:usersthinkpddde.,.Q1國、Viev Proc ObjectPrintSaveDetoils+/- Shovr | Fetch StoreDelete |Genr |sampjTPD1F3 Wo eRange: 1978 2001 - 24 obsSample. 197S 2001 - 24 obsDispla_ _ L 二 Ik/r二1 Series: GDPF 3 Work1國c=eq_ci0 lea回 eq_ecmS Igd_4S gdp3 res=gdp_adf3
35、端 gdpd1_acf_pacf0 gdpdlgdpdl搟gdpdl _3_acf_q 耀 gdpdCacf pacf 畫 gdpdl_arnsP idView Proc ObjectProperties=lc0ns_g(0 d8nsi S dgdp =dgdp ar Se10 e30 eci0 ecil國 eq01回 I eq02 國 eq03 回 I eq04* 卜 Untitli19858792J0。198610132 8019g7117g4 70198S14704 00198916466 00199018319 500 gdpdlf319912120040199225063 70ibi
36、groupu i 圄 group02199334500 70199446690 70md Z199558510.50New Paae /199668330 40Durbin-Watson stat6r19199774894 20Inverted AR Roots.80-.14iS0+.14i20199879003 3020199982673 10200089112 50200197159 44因此有:對2001年由國支出法GDP的預(yù)測結(jié)果(億元)預(yù)測值實際值誤差模型19546995933-0.48%模型39716095933128%應(yīng)用ARIMA(p,d,q)模型建模過程:對原序列進行平穩(wěn)性檢
37、驗,如果序列不滿足平穩(wěn)性條件,可以通過差分變換或者其它變換,如對數(shù) 差分變換使序列滿足平穩(wěn)性條件;通過計算能夠描述序列特征的一些統(tǒng)計量( ACF和PACF),來確定ARMA模型的階數(shù)p和q,并 在初始估計中選擇盡可能少的參數(shù);估計模型的未知參數(shù),并檢驗參數(shù)的顯著性,以及模型本身的合理性;進行診斷分析,以證實所得模型確實與所觀察到的數(shù)據(jù)特征相符。以上第3、4步,需要一些統(tǒng)計量和檢驗分析在第2步中的模型形式選擇是否合適,所需的統(tǒng)計量和檢驗如1)檢驗?zāi)P蛥?shù)顯著性水平的t統(tǒng)計量;2)為保證ARIMA(p,d,q)模型的平穩(wěn)性,模型的特征根的倒數(shù)皆小于1;3)模型的殘差序列應(yīng)當是一個白噪聲序列,用檢驗
38、序列相關(guān)的方法如Q統(tǒng)計量檢驗。用經(jīng)過居民消費價格指數(shù)調(diào)整后的 構(gòu)建誤差修正模型。11)檢3C cons和inc的平穩(wěn)性案例2 ECM莫型建模估計1978-2006年中國居民總量消費(cons)與總量可支配收入(inc)的數(shù)據(jù)Null Hypohiesis D(CONS,2 has a unit rootExogenous, constant, Linear TrendLag Lenglh 0 (Aulomal r ba on SlC MAXL.AG=6)Null Hypothesis D(lMC.2) has a unil routEjogenous constant. Lmear Trend
39、Lag Length- 0 AutDma.tic based o.2) C TREND(197fl)-1.161657-10448115,805630 200398-5.547606207 3544-0 50275312,226041.2927840 00OD 0.6199 o.2oaaR-squared0.572788Mean dependent var31.64615Adjusted R-squan&d0 53563SS D Oependenrvar673 7445S.E. of Feges5icm459.1167Akaike info criterion15,20465Sum squar
40、ed resrt48481翡Scnwvarz criterion15 34962Log likidihaod-194.6605Hannan-Quinn cliter.15.24645F-staiisiic15 4T872OurtHn-W3t$oiri 與tat2045250Prc*(F-slaU5bc)0.000057,-SlatislKProb/Augmented Dickev-Fuller test statistic-4 9aB5130.0024rest cribcai values1 % level5% level 1。呢 level-4 356068 -3.595026-3 2334
41、56MacKirinon one-suled p-vaiuesAugmenl&d DicKey-Fuller Test EquationDependent Vanatue- D(INC 3)Method. Least SquaresDate 12/3Q/14 Time,2T2啟sample (adjusted) 1S81 2006Included oiiservatians 26 after ad|U5trnenisCDefficieniSid Error l-StatisticProbD(1NC(-1).2)-1.0387330 208225-4.9885130.0000c-417 6950
42、461 7033-0.9046830.3750TREND(1978)54,2482528,4514Q1.9066920.0691R-squa.red0.519713Mean dependent var60.2153SAdjusted R-squaned0 47794BS D dependent var1385 472S.E. of regression1001.047Akaike info criterion1676365Sum squared resid248191Schwarz entenon16.90881Log likeliliDod-214.9274Hanrian-auinn tri
43、ler.16.80545F-statishc12 44399Durbin-Wat sw stat1 98G4D9Prob(F-s(atistic!0 000217Hull Hypothesis: D(LN_CONS) has a unit root Exogenous con&tanl-Llnear TrendLag Length 0 (Automatk based on SIC. MAXLG=6)t-StatisticProb*Augmented Dickev-Fuller lest statistic-3.7691070 0345Test ent re sii values-1% leve
44、l5% level1。 level-4 339330-3.5B7527-3 229230MacKinntin one-sided p-valuesNull Hypolhesis: DfLNJNC has a unit root Exogenous Con&tam-Linear TrendLag Length. 0 (Automatic based ort SIC. MAXLG=6)t-stausiicProb*Auamented Dickev-Fuller lest statistic-4.1109560 0166Test Eiitical values1% level5% level 10%
45、 level-4 339330-3 5B7527-3.229230*MacKinnon (1996) one-sided p-vlue5.Augmented Die Key-Fuller Test Equation dependent Variable D(LW_CONS.2) Method Least Squares Date. 12/30/14 Time. 20.34 Sample (aajusleti) 1980 2006 lnclu(led observalions 27 after adju&tmentEAugmented OicK&y-Fulier Test EquationDep
46、endent variable, dclnjmcjMethod Leasl SquaresDale 12/30/14 Time 20.34Sample (adjusled) 1980 2006included oDB&rvaltons 27 after adjustmentscoeTTicient std. Error t-stallstlc ProbD(Lh_CONS(d) CT RE ND(1?78-0 740151 0.05B115 5 29E-D50.19636837691970.0225572.5763950 WXJB53 D 062090Q.D009 0.0166 0 961QR-
47、5quareci0 377136Mean oepencJent var-0 000473Adjusiefi R-squared0.325231s D. dependeni var0 041629S E ot regression0 0341196Akaike info errterion-3 808975sum squared resic!0.02&D65sc rmarz criterion-3.664993Log likeliliQad54 42118Hannan-Quinn enter-3.76E161F-statlstlc7.265852Dufbin-walson stal1 83577
48、8C-.-LPL -it -上::上: _ *nrkCoenicierirSM Error t-5t3llstlcProbD0-H INC(-1J)-0 Bi48230198205-4 11095C0 0004c0 0538010.0244892.1969020.0379TREMD(1S780 0013060 0011371.1464010 3621R-squared0 418272Mean dependent var0.000565AdjDBled R-squared0 369795s D deperdenl var0057427S.E of regression0 045589Akaike
49、 info criterion-3.233883sum squared nesia0 049079Scmwarz criterion-3 0B9901Log likelihood46,65742Hannan-Quinn criter.-3.191070F-statistice,、g628201r jn. ,n j e- n nOurtun-Watson star1 87652C*ni經(jīng)檢驗發(fā)現(xiàn)cons和inc序列都是I(2)時間序列,而取對數(shù)后的ln(cons)和ln(inc)序列都是1(1)時間序歹U, 根據(jù)經(jīng)濟理論擬構(gòu)建ln(cons)和ln(inc)的長期均衡模型。檢33 ln(cons
50、)和ln(inc)的協(xié)整關(guān)系Depeodenl Variable. LN_CONSMetncKl Least SquaresDtc 12/30/14 Time- 20 38Sample 1078 2M6included observations. 29CoefficientSid Errort-StabsUcPnot)C0.5872550.1427994.11245B0.0005LNJMC0.8800210.01421961,391950.0000R-四V吊red口993001Men dependent v3r0401233Adjusled R-squared0 992742S.D. depe
51、ndenl var0.6fi5fi0s.E of regression0.056790AH卻 Ke info criterion-2.832439sum squared residQ .08 7078Schwarz cfflefion-2.730143Log liKeiinocxi心 07037Hannan-Quinn enter-2 SO29O7F-slatistic3S30 614Durtoinr-Watson stat0.415198Prob(F-slatistit)0.000000Augmented Dickey-Fuller unrt Root rest on ecmNull Hyp
52、olhesis ECM has m unit root Exogenous, constant. Linear Trend Lag Length: 6 (Auiomatic Eased on sic. maxlag=6)t-SltisticProb *Adornented Dickey Fuller 乳 stali3M7.8194180.0000Test cnttcal values1% level-4 4407395峪 level-3&S28961G% level-3 254671MacKinnon (1996) one-sided p-values.Augmented Dickey-F j
53、llfer Test Equalion Dependent Variable. D(ECM) Melhod: Least Sa wares* ill*殘差ecmt序列的AEG檢驗,t 統(tǒng)計量=-7.819 1 111 0.159 0.055 16.9S0 0.10B:1*12 0O56 0 043 17 36B Q 1弼經(jīng)檢驗殘差序列平穩(wěn),且不存在序列相關(guān)。 誤差修正模型為:ln(const) = 0.794 : ln(inct) - 0.241ecmu-10 -案例3 VAR模型建模、估計、檢驗與應(yīng)用凱恩斯學派認為貨幣供給量變動對經(jīng)濟的影響是間接地通過利率變動來實現(xiàn)的。貨幣政策的傳遞主要 有
54、兩個途徑:一是貨幣供給與利率的關(guān)系,即流動性偏好途徑;二是利率與投資的關(guān)系,即利率彈性途徑。 根據(jù)凱恩斯的理論,當貨幣供給量增加時,貨幣供給大于貨幣需求,供給相對過剩,利率下降,刺激投資, 促進國民經(jīng)濟增長。當然他假定利率變動是由市場調(diào)節(jié)的,與貨幣供給量呈反方向變動。在我國利率是基 本固定的,但是仍然可以利用政策手段直接調(diào)整利率或投資,同樣可以達到經(jīng)濟宏觀調(diào)控的目的。但貨幣 學派主要強調(diào)貨幣供給量對經(jīng)濟的短期影響,而中長期,貨幣數(shù)量的作用主要在于影響價格以及其他貨幣 表示的量,而不能影響實際國內(nèi)生產(chǎn)總值。為了研究貨幣供應(yīng)量和利率的變動對經(jīng)濟波動的長期影響和短期影響及其貢獻度,采用我國1995年
55、1季度2007年4季度的季度數(shù)據(jù),并對變量進行了季節(jié)調(diào)整。設(shè)居民消費價格指數(shù)為CPI_90(1990年1季度=1)、居民消費價格指數(shù)增長率為CPI、實際GDP的對數(shù)ln(GDP/CPI_90)為ln(gdp)、實際M1的對數(shù)ln(M1/CPI_90)為ln(m1)和實際利率rr(一年期存款利率 R-CPI)。利用VAR(p)模型對ln(gdp)、ln(m1)和rr3 個變量之間的關(guān)系進行實證研究,其中實際GDP和實際M1取對數(shù)差分后平穩(wěn),出現(xiàn)在模型中,而實際利率是平穩(wěn)序列,沒有取對數(shù)。變量平穩(wěn)性檢驗Augmented DickeyFuller Unit Root Test an D(LN M1
56、 P SA)Null Hypothesis: D(LH_M1_P_SA) has a unit root Exogenous Constant, Linear TrendLag Length 0 (Aulomalic based on SIC. MAXLAG-10)tStattsttcProt).aAugmented Dickey-Fuller test static he-8 075925oooooTesl c riitic al values.1 % level5% level 10% level-4 J 52511 0502373 -3.180699tMacKinnon (1996) o
57、ne-sided p-valuesAugmented Dlclcey-Fulier Test EquaUon Dependent Variable D(LN_M1_P_SA,2) Method Least Squares Date 12/3014 Time. 21.39sample (adjusied). 1S95Q3 2007Q4 included observations 50 after adjusunemsAugmented Dickey-Fulltr Unit Root Tst on D|LN GDP P SAhull Hypothesis. d(ln_gdp_P_5A)has a
58、unit rootErogenous Constarrt. Linear TrendLag Length 0 (Automatic based on SIC MAXLAG=10)I-StatislicProb?Auamenieo Oictev-Fuiier tesl statistic-11 BS914oooooTest critical11% level-4 1525115% level-3.50237310% level-3.1806&9MacKinnon (1996) one-siaed p-vaiuesAugnienl&d Dickey-Fuller Test Equation Dep
59、endent Variable D(LN_e啊.|prn omectl Pnnt Hare I Fneeie Eme IIlirpuPe | 融金7|RepresentationsEstimation OutputResiduak,on Estinwica196550.216726J5842)(0 J 5974)M60Sj 1 35E744Endogenous TableEndogenous Graph297220 258082電368)(0J62M)aniQ7i r iLag StructureAR Roots TableAR Roots GraphGranger Causality/Blo
60、ck Exogeneity TestsLag Exclusion TeitsResidual Test占卜Cointegration Test.mpulse Response.Variance Decomposition.Lag Length Criteria-Label038S20.409763Sum sq. re&ids26.35B500.0067460.002573 Var VARI Worlcfile: R MlVAR Lag Order Selection CriteriaEndogenous variables RR DLOG(M1_P_SA) DLOG(GDP_P_SA) Exo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育機構(gòu)轉(zhuǎn)校協(xié)議書
- 男女交往協(xié)議書模板
- 門面經(jīng)營合伙協(xié)議書
- 裝修施工股東協(xié)議書
- 塔吊施工安全協(xié)議書
- 簽約公司協(xié)議書范本
- 生前財產(chǎn)分割協(xié)議書
- 上門出診換藥協(xié)議書
- 民營醫(yī)院暗股協(xié)議書
- 入境中介服務(wù)協(xié)議書
- 第6章-非線性有限元法(幾何非線性)課件
- 初中物理-流體壓強與流速的關(guān)系教學設(shè)計學情分析教材分析課后反思
- 差額定率分檔累進法計算
- 第5章全程導(dǎo)游服務(wù)程序與服務(wù)質(zhì)量(課件)《導(dǎo)游業(yè)務(wù)》(第五版)
- 專項資金支出明細表參考模板范本
- 《陳情表》《項脊軒志》默寫練習-統(tǒng)編版高中語文選擇性必修下冊
- HEY JUDE歌詞逐字逐句教唱
- 動能和勢能的相互轉(zhuǎn)化
- 紅綠燈控制系統(tǒng)的設(shè)計與制作
- 不負食光 拒絕浪費-主題班會課件
- wagner假體專題知識培訓(xùn)
評論
0/150
提交評論