版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若為虛數單位,則復數,則在復平面內對應的點位于( )A第一象限B第二象限C第三象限D第四象限2如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視
2、圖,則該幾何體的體積為A72B64C48D323在三棱錐中,且分別是棱,的中點,下面四個結論:;平面;三棱錐的體積的最大值為;與一定不垂直.其中所有正確命題的序號是( )ABCD4已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區(qū)間內的圖象是( )ABCD5在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發(fā)現了棣莫弗定理:,則,由棣莫弗定理可以導出復數乘方公式:,已知,則( )AB4CD166如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、分別交于、,設三棱錐的體積為,截面三角形的面積為,則( )A,B,C
3、,D,7已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為( )ABCD8已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是( )ABCD9已知平面,直線滿足,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D即不充分也不必要條件10若雙曲線:的一條漸近線方程為,則( )ABCD11如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是( ).ABCD12已知,則,的大小關系為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知平面向量,滿
4、足|1,|2,的夾角等于,且()()0,則|的取值范圍是_14函數的定義域為_15已知數列an的前n項和為Sn,向量(4,n),(Sn,n+3).若,則數列前2020項和為_16正項等比數列|滿足,且成等差數列,則取得最小值時的值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查各組人數統(tǒng)計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機
5、抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望18(12分)如圖,在四棱柱中,平面,底面ABCD滿足BC,且()求證:平面;()求直線與平面所成角的正弦值.19(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.(1)為了解“五一”勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取
6、4人,記4人中年齡在內的人數為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數據資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數據分成3個區(qū)間整理得表:勞動節(jié)當日客流量頻數(年)244以這10年的數據資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯(lián)關系如下表:勞動節(jié)當日客流量
7、型游船最多使用量123若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入卻不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?20(12分)某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統(tǒng)計了2019年
8、1月份所有用戶的日平均步數,規(guī)定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:運動達人非運動達人總計男3560女26總計100(1)(i)將列聯(lián)表補充完整;(ii)據此列聯(lián)表判斷,能否有的把握認為“日平均走步數和性別是否有關”?(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數的分布列及期望.附:21(12分)如圖中,為的中點,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.22(10分)已知函數.(1)求不等式的解集;(2)設的最小值為,正數,
9、滿足,證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】首先根據特殊角的三角函數值將復數化為,求出,再利用復數的幾何意義即可求解.【詳解】,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數的幾何意義、共軛復數的概念、特殊角的三角函數值,屬于基礎題.2B【解析】由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長
10、為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應公式求解。3D【解析】通過證明平面,證得;通過證明,證得平面;求得三棱錐體積的最大值,由此判斷的正確性;利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,又,所以平面,所以,故正確;因為,所以平面,故正確;當平面與平面垂直時,最大,最大值為,
11、故錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.4A【解析】由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以 的周期為, 則, 所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.5D【解析】根據復數乘方公式:,直接求解即
12、可.【詳解】, .故選:D【點睛】本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.6A【解析】設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得,則,由余弦定理得,又,當平面平面時,排除B、D選項;因為,此時,當平面平面時,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題7B【解析】根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,
13、結合焦點坐標求解.【詳解】雙曲線與的漸近線相同,且焦點在軸上,可設雙曲線的方程為,一個焦點為,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.8A【解析】由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,所以;當軸時,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.9A【解析】,是相交平
14、面,直線平面,則“” “”,反之,直線滿足,則或/或平面,即可判斷出結論【詳解】解:已知直線平面,則“” “”,反之,直線滿足,則或/或平面, “”是“”的充分不必要條件故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力10A【解析】根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.11C【解析】易得,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,所以,即,故離心率為.故選:C.【點睛】本題考
15、查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.12D【解析】構造函數,利用導數求得的單調區(qū)間,由此判斷出的大小關系.【詳解】依題意,得,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區(qū)間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】計算得到|,|cos1,解得cos,根據三角函數的有界性計算范圍得到答案.【詳解】由()()0 可得 ()|cos12cos|cos1,為與的夾角再由 21+4+212cos7 可得|,|cos1
16、,解得cos0,1cos1,1,即|+10,解得 |,故答案為【點睛】本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數的有界性是解題的關鍵.14【解析】根據函數成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數有意義,則 ,即.則定義域為: .故答案為: 【點睛】本題主要考查定義域的求解,要熟練掌握張建函數成立的條件.15【解析】由已知可得4Snn(n+3)0,可得Sn,n1時,a1S11.當n2時,anSnSn1.可得:2().利用裂項求和方法即可得出.【詳解】,4Snn(n+3)0,Sn,n1時,a1S11.當n2時,anSnSn1.,滿足上式,.2().數列前202
17、0項和為2(1)2(1).故答案為:.【點睛】本題考查了向量垂直與數量積的關系、數列遞推關系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.162【解析】先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數列、等差數列的有關性質以及等比數列求積、求最值的有關運算,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)見解析, 【解析】(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數為,這
18、兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2 人,所以抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數學期望.【詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、丙兩小組的學生人數分別為4人、2人,所以,抽取的兩人中是甲組
19、的學生的人數的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.18 () 證明見解析;()【解析】()證明,根據得到,得到證明.() 如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,計算向量夾角得到答案.【詳解】() 平面,平面,故.,故,故.,故平面.()如圖所示:分別以為軸建立空間直角坐標系,則,.設平面的法向量,則,即,取得到,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.
20、19(1);(2)投入3艘型游船使其當日獲得的總利潤最大【解析】(1)首先計算出在,內抽取的人數,然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.【詳解】(1)年齡在內的游客人數為150,年齡在內的游客人數為100;若采用分層抽樣的方法抽取10人,則年齡在內的人數為6人,年齡在內的人數為4人.可得.(2)當投入1艘型游船時,因客流量總大于1,則(萬元).當投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).當投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節(jié)當日應投入3艘型游船使其當日獲得的總利潤最大.【點睛】本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數學思想方法,屬于中檔題.20(1)(i)填表見解析(ii)沒有的把握認為“日平均走步數和性別是否有關”(2)詳見解析【解析】(1)(i)由已給數據可完成列聯(lián)表,(ii)計算出后可得;(2)由列聯(lián)表知從運動達人中抽取1個用戶為女用戶的概率為,的取值為,由二項分布概率公式計算出各概率得分布列,由期望公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版智能便利店技術授權及門店運營合同4篇
- 個人財務規(guī)劃服務合同2024
- 2025年水電設施智能化改造安裝合同4篇
- 二零二五版光盤復制與創(chuàng)意設計及制作合同3篇
- 三方協(xié)作2024年勞務分包協(xié)議模板版A版
- 2025版民爆物品安全評估與風險管理合同模板4篇
- 2024通信工程智能化設備采購及安裝服務協(xié)議3篇
- 2025年度腳手架安裝與拆卸工程承包合同范本4篇
- 校園心理劇在學生群體中的運用
- 小學科學課程資源的創(chuàng)新利用與教育效果
- 2025年度房地產權證辦理委托代理合同典范3篇
- 柴油墊資合同模板
- 湖北省五市州2023-2024學年高一下學期期末聯(lián)考數學試題
- 城市作戰(zhàn)案例研究報告
- 【正版授權】 ISO 12803:1997 EN Representative sampling of plutonium nitrate solutions for determination of plutonium concentration
- 道德經全文及注釋
- 2024中考考前地理沖刺卷及答案(含答題卡)
- 多子女贍養(yǎng)老人協(xié)議書范文
- 彩票市場銷售計劃書
- 支付行業(yè)反洗錢與反恐怖融資
- 基礎設施綠色施工技術研究
評論
0/150
提交評論