理論力學-靜力學:第四章 質(zhì)點系的平衡C_第1頁
理論力學-靜力學:第四章 質(zhì)點系的平衡C_第2頁
理論力學-靜力學:第四章 質(zhì)點系的平衡C_第3頁
理論力學-靜力學:第四章 質(zhì)點系的平衡C_第4頁
理論力學-靜力學:第四章 質(zhì)點系的平衡C_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、習題:4-7、4-12、4-15變形體的虛位移原理質(zhì)點系平衡的穩(wěn)定性7/11/202214-6 虛位移原理三、變形體的虛位移原理變形體的虛位移原理:具有雙面、定常、完整、理想約束處于靜止的質(zhì)點系,在給定位置處于平衡的充分必要條件是,其所有外力和內(nèi)力在該位置任意給定的虛位移上所作的虛功之和等于零。外力(external force):質(zhì)點系外部的物體作用于質(zhì)點系上的力內(nèi)力(internal force):質(zhì)點系內(nèi)部的作用力7/11/202224-6 虛位移原理例:機構如圖所示,不計構件自重。 已知 AB = BC = l, 彈簧剛度為k,當 AC = a 時,彈簧無變形。設在滑塊上作用一水平力F

2、,求該機構處于平衡時,A和C兩點間的距離(xC=?)ABCDE內(nèi)力虛功:ABCDE7/11/202234-6 虛位移原理外力虛功:ABCDE內(nèi)力虛功:7/11/202244-7 平衡的穩(wěn)定性演示實驗:分析鋼絲在杯口平衡位置的穩(wěn)定性。思考:分析雙輪車是如何實現(xiàn)平衡的7/11/202254-7 平衡的穩(wěn)定性 平衡的穩(wěn)定性(stability of equilibrium):質(zhì)點系處于某一平衡位置,若受到微小干擾偏離平衡位置后總不超出平衡位置鄰近的某個微小區(qū)域,則稱質(zhì)點系在該位置的平衡是穩(wěn)定的(stable),否則是不穩(wěn)定的(unstable)。7/11/202264-7 平衡的穩(wěn)定性一、勢力場及勢

3、能力 場(force field):質(zhì)點(系)所受力完全由其所在位置決定,這樣的空間稱為力場。勢力場(potential force field):場力所做的功與質(zhì)點經(jīng)過的路徑無關,這樣的力場稱為勢力場或保守力場。勢 能(potential energy):質(zhì)點系從某一位置A 到基準點 A0 ,有勢力所做的功,稱為質(zhì)點系在該位置的勢能?;鶞庶c的勢能為零。7/11/202274-7 平衡的穩(wěn)定性二、勢力場的特性設作用在質(zhì)點上的有勢力為:設質(zhì)點的勢能函數(shù)為: 則有關系式mgMO舉例說明:7/11/202284-7 平衡的穩(wěn)定性三、具有理想約束的質(zhì)點系在勢力場中的平衡條件設質(zhì)點系中有n個質(zhì)點,每個質(zhì)

4、點的勢能為函數(shù)(可微)為:質(zhì)點系的總勢能為:有勢力與勢能函數(shù)的關系式:根據(jù)虛位移原理:平衡的充分必要條件:質(zhì)點系在平衡位置的勢能變分等于零7/11/202294-7 平衡的穩(wěn)定性質(zhì)點系的總勢能為:若質(zhì)點系的廣義坐標為:質(zhì)點系在平衡位置有:對于具有完整約束質(zhì)點系的廣義坐標的虛位移(變分)是獨立的(*)式成立的充分必要條件:平衡的充分必要條件:質(zhì)點系在平衡位置的勢能取駐定值7/11/2022104-7 平衡的穩(wěn)定性質(zhì)點系在勢力場中平衡的充分必要條件是:注意:質(zhì)點系勢能函數(shù)(可微)取得駐值是平衡的充分必要條件,但平衡并不一定是穩(wěn)定的。ABCx=0是平衡位置且是穩(wěn)定的x=0是平衡位置且是不穩(wěn)定的7/1

5、1/2022114-7 平衡的穩(wěn)定性四、質(zhì)點系在勢力場中平衡的穩(wěn)定性定理:質(zhì)點系在勢力場中的平衡位置是穩(wěn)定的充分必要條件是系統(tǒng)在平衡位置的勢能為極小值。質(zhì)點系在勢力場中平衡及其穩(wěn)定性分析的基本步驟:1、給出系統(tǒng)的勢能函數(shù)2、確定系統(tǒng)的平衡位置3、討論平衡位置的穩(wěn)定性7/11/2022124-7 平衡的穩(wěn)定性解:取 =0 為系統(tǒng)的零勢位若:平衡位置是穩(wěn)定的。例:系統(tǒng)如圖所示,滑塊的質(zhì)量為m,桿長為L(不計質(zhì)量),當桿鉛垂時彈簧無變形,求系統(tǒng)的平衡位置并分析其穩(wěn)定性。7/11/2022134-7 平衡的穩(wěn)定性討論平衡位置的穩(wěn)定性:在任何位置均能平衡7/11/2022144-7 平衡的穩(wěn)定性分析平衡

6、是如何實現(xiàn)的?7/11/202215問題討論ABCDEaa問題: A端的約束力偶與主動力F的作用點和主動力偶M是否有關ABCDEaa7/11/202216問題討論BA問題:板用銷釘約束在滑道內(nèi),若在圖示位置給A點一個虛位移 ,確定板上B點的虛位移與A點虛位移的關系,并指出在圖示位置,板上哪點的虛位移為零?微小位移投影定理的推論: 若剛體上兩點微小位移共面且不平行,則該兩點微小位移垂線的交點其微小位移為零。P7/11/202217問題討論ABCDD問題:結構及其受力如圖所示,如何用剛體系平衡的方法(寫平衡方程)求解 A 端的約束力偶。問題:如何求鉸鏈 C 的約束力?要求:用最少的平衡方程求解7/

7、11/202218問題討論問題:結構由均質(zhì)桿構成,其受力如圖所示,用什么方法求解彈簧力。已知主動力、幾何尺寸、彈簧剛度。ABCD問題:定性分析彈簧受拉還是受壓?7/11/202219問題討論1234設所有桿均為二力桿問題: 圖中的系統(tǒng)是否是靜定結構?7/11/202220問題討論關于系統(tǒng)靜定性的討論靜 定 問 題 ( statically determinate problem): 未知量的數(shù)目= 獨立平衡方程的數(shù)目靜不定問題( statically indeterminate problem): 未知量的數(shù)目 獨立平衡方程的數(shù)目當所研究的系統(tǒng)是結構(非機構和瞬態(tài)機構)時靜不定結構的物理解釋是結構中存在有多余的約束。 當系統(tǒng)是機構或是瞬態(tài)機構時,只有在特定的主動力作用下,系統(tǒng)才能平衡。靜定結構 未知量的數(shù)目獨立的平衡方程的數(shù)目7/11/202221本章基本內(nèi)容基

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論