版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、12溫馨提示溫馨提示: : 請點擊相關(guān)欄目。請點擊相關(guān)欄目??键c考點 大整合大整合考向考向 大突破大突破考題考題 大攻略大攻略考前考前 大沖關(guān)大沖關(guān)1把握橢圓的定義把握橢圓的定義平面內(nèi)到兩個定點平面內(nèi)到兩個定點F1,F(xiàn)2的距離之的距離之和和等于常數(shù)等于常數(shù)(大于大于|F1F2|)的點的軌跡叫做橢圓,這兩個定點叫做橢圓的的點的軌跡叫做橢圓,這兩個定點叫做橢圓的焦點焦點,兩焦,兩焦點間的距離叫做橢圓的點間的距離叫做橢圓的焦距焦距說明說明當常數(shù)當常數(shù)|F1F2|時,軌跡為線段時,軌跡為線段|F1F2|;當常數(shù);當常數(shù)|F1F2| 時,軌跡不存在時,軌跡不存在考點考點 大整合大整合2 2牢記橢圓的標準
2、方程及其幾何意義牢記橢圓的標準方程及其幾何意義 條件條件 2a2c,a2b2c2,a0,b0,c0標準方程標準方程及圖形及圖形范圍范圍|x|a;|y|b|x|b;|y|a對稱性對稱性曲線關(guān)于曲線關(guān)于x軸、軸、y軸、原點對稱軸、原點對稱曲線關(guān)于曲線關(guān)于x軸、軸、y軸、原點對稱軸、原點對稱頂點頂點長軸頂點長軸頂點(a,0),短軸頂點,短軸頂點(0,b)長軸頂點長軸頂點(0,a)短軸頂點短軸頂點(b,0) 焦點焦點 ( (c,0)c,0) (0(0,c)c)通徑通徑 AB =2b/a離心率離心率 準線方程準線方程X=-a/c x=a/c3.3.靈活選用求橢圓標準方程的兩種方法靈活選用求橢圓標準方程的
3、兩種方法(2)(2)待定系數(shù)法:根據(jù)橢圓焦點是在待定系數(shù)法:根據(jù)橢圓焦點是在x x軸還是軸還是y y軸上,軸上,設(shè)出相應(yīng)形式的標準方程,設(shè)出相應(yīng)形式的標準方程,然后根據(jù)條件確定關(guān)于然后根據(jù)條件確定關(guān)于a a,b b,c c的方程組,解出的方程組,解出a a2 2,b b2 2,從而寫出橢圓的標準方程,從而寫出橢圓的標準方程(1)定義法:根據(jù)橢圓定義,確定定義法:根據(jù)橢圓定義,確定a2,b2的值,再的值,再結(jié)合焦點位置,直接寫出橢圓方程結(jié)合焦點位置,直接寫出橢圓方程例例1:(1)(2013長治調(diào)研長治調(diào)研)設(shè)設(shè)F1,F(xiàn)2是橢圓是橢圓: 的兩個的兩個焦點,焦點,P是橢圓上的點,且是橢圓上的點,且|
4、PF1|PF2|43,則,則PF1F2的面的面積為積為()A30 B25 C24 D40|F1F2|10,PF1PF2.解析:解析:(1)|PF1|PF2|14,又又|PF1|PF2|43,|PF1|8,|PF2|6. 考向大突破一:橢圓的定義及標準方程考向大突破一:橢圓的定義及標準方程(2)(2013全國大綱卷全國大綱卷)已知已知F1(1,0),F(xiàn)2(1,0)是橢圓是橢圓C的兩個焦點,過的兩個焦點,過F2且垂直于且垂直于x軸的直線交軸的直線交C于于A,B兩點,且兩點,且|AB|3,則,則C的方程為的方程為()2利用定義和余弦定理可求得利用定義和余弦定理可求得|PF1|PF2|,再結(jié)合,再結(jié)合
5、|PF1|2|PF2|2(|PF1|PF2|)22|PF1|PF2|進行轉(zhuǎn)化,可求焦點三角形的周長和面進行轉(zhuǎn)化,可求焦點三角形的周長和面積積1.橢圓定義的應(yīng)用主要有兩個方面:一是利用定義求橢圓的標準方程;橢圓定義的應(yīng)用主要有兩個方面:一是利用定義求橢圓的標準方程;二是利用定義求焦點三角形的周長、面積及弦長、最值和離心率等二是利用定義求焦點三角形的周長、面積及弦長、最值和離心率等3當橢圓焦點位置不明確時,可設(shè)為當橢圓焦點位置不明確時,可設(shè)為 (m0,n0,mn),也可設(shè)為,也可設(shè)為Ax2By21(A0,B0,且,且AB) 二、橢圓的幾何性質(zhì)二、橢圓的幾何性質(zhì)xyoF1pF22求解與橢圓幾何性質(zhì)有
6、關(guān)的問題時常結(jié)合圖求解與橢圓幾何性質(zhì)有關(guān)的問題時常結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形當涉及到頂點、焦點、長軸、短軸等橢圓的到圖形當涉及到頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系的內(nèi)在聯(lián)系1.橢圓的幾何性質(zhì)常涉及一些不等關(guān)系,例如對橢圓橢圓的幾何性質(zhì)常涉及一些不等關(guān)系,例如對橢圓 (ab0)有有axa,byb,0e1等,在求與橢圓有關(guān)的等,在求與橢圓有關(guān)的一些量的范圍,或者求這些量的最大值或最小值時,經(jīng)常一些量的范圍,或者求這些量的最大值或最小
7、值時,經(jīng)常用到這些不等關(guān)系用到這些不等關(guān)系變式訓(xùn)練變式訓(xùn)練2.(1)(20132.(1)(2013四川卷四川卷) )從橢圓從橢圓 (a(ab b0)0)上一點上一點P P向向x x軸作垂線,軸作垂線,垂足恰為左焦點垂足恰為左焦點F F1 1,A A是橢圓與是橢圓與x x軸正半軸的交點,軸正半軸的交點,B B是橢圓與是橢圓與y y軸正半軸軸正半軸的交點,且的交點,且ABOP(OABOP(O是坐標原點是坐標原點) ),則該橢圓的離心率是,則該橢圓的離心率是( () )(2)(2)底面直徑為底面直徑為12 cm12 cm的圓柱被與底面成的圓柱被與底面成3030的平面所截,截口是一個的平面所截,截口是
8、一個橢圓,則這個橢圓的長軸長為橢圓,則這個橢圓的長軸長為_,短軸長為,短軸長為_,離心率為,離心率為_(2013全國卷全國卷)平面直角坐標系平面直角坐標系xOy中,過橢圓中,過橢圓M: (ab0)右焦點的直線右焦點的直線xy 0交交M于于A,B兩點,兩點,P為為AB的中點,且的中點,且OP的斜的斜率為率為(1)求求M的方程;的方程;(2)C,D為為M上的兩點,若四邊形上的兩點,若四邊形ACBD的對角線的對角線CDAB,求四邊形,求四邊形ACBD面積的最大值面積的最大值 三、直線與橢圓的位置關(guān)系三、直線與橢圓的位置關(guān)系(2013全國卷全國卷)平面直角坐標系平面直角坐標系xOy中,過橢圓中,過橢圓
9、M: (ab0)右焦點右焦點的直線的直線xy 0交交M于于A,B兩點,兩點,P為為AB的中點,且的中點,且OP的斜率為的斜率為(1)求求M的方程;的方程;(2)C,D為為M上的兩點,若四邊形上的兩點,若四邊形ACBD的對角線的對角線CDAB,求四邊形,求四邊形ACBD面積面積的最大值的最大值2直線被橢圓截得的弦長公式直線被橢圓截得的弦長公式設(shè)直線與橢圓的交點坐標為設(shè)直線與橢圓的交點坐標為A(x1,y1),B(x2,y2),則則|AB| 1.判斷直線與橢圓位置關(guān)系的四個步驟判斷直線與橢圓位置關(guān)系的四個步驟 第一步:確定直線與橢圓的方程;第一步:確定直線與橢圓的方程; 第二步:聯(lián)立直線方程與橢圓方
10、程;第二步:聯(lián)立直線方程與橢圓方程; 第三步:消元得出關(guān)于第三步:消元得出關(guān)于x(或或y)的一元二次方程;的一元二次方程; 第四步:當?shù)谒牟剑寒?時,直線與橢圓相交;時,直線與橢圓相交; 當當0時,直線與橢圓相切;時,直線與橢圓相切; 當當0時,直線與橢圓相離時,直線與橢圓相離歸納升華歸納升華 3.已知橢圓已知橢圓C: (ab0)的離心率為的離心率為 ,以原點,以原點為圓心,橢圓的短半軸為半徑的圓與直線為圓心,橢圓的短半軸為半徑的圓與直線xy 0相切,相切,過點過點P(4,0)且不垂直于且不垂直于x軸的直線軸的直線l與橢圓與橢圓C相交于相交于A,B兩兩點點(1)求橢圓求橢圓C的方程;的方程;(
11、2)求求 的取值范圍的取值范圍(12分分)(2013天津卷天津卷)設(shè)橢圓設(shè)橢圓 (ab0)的左焦點為的左焦點為F,離心率,離心率為為 ,過點,過點F且與且與x軸垂直的直線被橢圓截得的線段長為軸垂直的直線被橢圓截得的線段長為 .(1)求橢圓的方程;求橢圓的方程;(2)設(shè)設(shè)A,B分別為橢圓的左、右頂點,過點分別為橢圓的左、右頂點,過點F且斜率為且斜率為k的直線與橢圓交的直線與橢圓交于于C,D兩點,若兩點,若 求求k的值的值過點過點F且與且與x軸垂軸垂直的直線直的直線x=-c焦點坐標焦點坐標與橢圓方程聯(lián)立與橢圓方程聯(lián)立b的值的值弦長弦長橢圓橢圓 思維導(dǎo)圖思維導(dǎo)圖 考向大攻略:直線與橢圓綜合問題的規(guī)范解答考向大攻略:直線與橢圓綜合問題的規(guī)范解答 考向大攻略:直線與橢圓綜合問題的規(guī)范解答考向大攻略:直線與橢圓綜合問題的規(guī)范解答k的值的值 由(由(1)知)知A,B坐標坐標設(shè)出設(shè)出CD的方程的方程關(guān)于關(guān)于k的等的等式式關(guān)于關(guān)于x的一元二的一元二次方程次方程x1x2,x1x2的值的值 思維導(dǎo)圖思維導(dǎo)圖 失失分分警警示示
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《勞動者及其工會》課件
- 2021年成都中醫(yī)藥大學(xué)針灸治療學(xué)試題及答案
- 受壓構(gòu)件的計算教學(xué)課件
- 2025年高二化學(xué)寒假銜接講練 (人教版)寒假預(yù)習-第08講 配合物和超分子學(xué)生版
- 高中信息技術(shù)粵教版選修3說課稿-6.2.3 數(shù)據(jù)加密
- 《創(chuàng)新思維方法培養(yǎng)》課件
- 感染科專科理論知識考核試題
- 《新團隊執(zhí)行力》課件
- 《設(shè)備及管道絕熱技術(shù)通則GB T 4272-2024》內(nèi)容學(xué)習重點
- 2025年廣東省高中學(xué)業(yè)水平考試綜合測評卷(三)政治試題(含解析)
- 射頻消融治療腰椎間盤突出
- SHT 3005-2016 石油化工自動化儀表選型設(shè)計規(guī)范
- 中藥學(xué)專業(yè)畢業(yè)設(shè)計
- (正式版)SHT 3551-2024 石油化工儀表工程施工及驗收規(guī)范
- (完整)六年級數(shù)學(xué)上冊寒假每天10道計算題5道應(yīng)用題
- 鐵路工程綠色設(shè)計標準
- 數(shù)字政府建設(shè)簡介演示
- 車膜品牌推廣方案
- 消化道出血的PBL教學(xué)查房
- 2024年小學(xué)四年級數(shù)學(xué)上冊??家族e題綜合測評卷
- 小學(xué)數(shù)學(xué)五年級下冊通分練習100題附答案
評論
0/150
提交評論