![新課標人教版選修1-2《反證法》課件_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/2/42fd5edb-77b1-4d98-b28c-7a430fbf3f17/42fd5edb-77b1-4d98-b28c-7a430fbf3f171.gif)
![新課標人教版選修1-2《反證法》課件_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/2/42fd5edb-77b1-4d98-b28c-7a430fbf3f17/42fd5edb-77b1-4d98-b28c-7a430fbf3f172.gif)
![新課標人教版選修1-2《反證法》課件_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/2/42fd5edb-77b1-4d98-b28c-7a430fbf3f17/42fd5edb-77b1-4d98-b28c-7a430fbf3f173.gif)
![新課標人教版選修1-2《反證法》課件_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/2/42fd5edb-77b1-4d98-b28c-7a430fbf3f17/42fd5edb-77b1-4d98-b28c-7a430fbf3f174.gif)
![新課標人教版選修1-2《反證法》課件_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/2/42fd5edb-77b1-4d98-b28c-7a430fbf3f17/42fd5edb-77b1-4d98-b28c-7a430fbf3f175.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、路路邊邊苦苦李李 王戎王戎7 7歲時歲時, ,與小伙伴們外出游玩與小伙伴們外出游玩, ,看到路邊的李樹上結滿了果子看到路邊的李樹上結滿了果子. .小伙小伙伴們紛紛去摘取果子伴們紛紛去摘取果子, ,只有王戎站在只有王戎站在原地不動原地不動. .伙伴問他為什么不去摘?伙伴問他為什么不去摘?王戎回答說王戎回答說: :“樹在道邊而多樹在道邊而多子子, ,此必苦李此必苦李.”.”小伙伴摘取一小伙伴摘取一個嘗了一下個嘗了一下, ,果然是苦李果然是苦李. . 王戎是怎么知王戎是怎么知道李子是苦的呢道李子是苦的呢? ?他運用了怎樣的他運用了怎樣的推理方法推理方法? ?有一天,牛頭馬面把一個高頭大馬的鬼帶進閻王
2、寶殿。有一天,牛頭馬面把一個高頭大馬的鬼帶進閻王寶殿。 閻羅王把驚堂木一拍:閻羅王把驚堂木一拍:“這廝好無禮,見到本王也不會這廝好無禮,見到本王也不會下跪叩頭。拉下,打一百棒。下跪叩頭。拉下,打一百棒?!?” “ “大王,請原諒。我是洋鬼子,不知你們東方地獄的禮節(jié)大王,請原諒。我是洋鬼子,不知你們東方地獄的禮節(jié)請原諒。請原諒。” ” “ “好!就原諒你一次,你是誰?好!就原諒你一次,你是誰?” ” “ “我是我是SupermanSuperman?!闭驹陂惲_王旁邊的師爺馬上俯身對閻站在閻羅王旁邊的師爺馬上俯身對閻王解釋:王解釋:“SupermanSuperman是超人。是超人?!?” “ “好大
3、的口氣,蘇本梅先生你怎么會是超人?好大的口氣,蘇本梅先生你怎么會是超人?” ” SupermanSuperman以傲慢的口氣說:以傲慢的口氣說:“當然是超人,我能做人類所當然是超人,我能做人類所不能做的事,我是萬能,世上沒有一件事我是不能做的。不能做的事,我是萬能,世上沒有一件事我是不能做的?!?” “ “好!那么你舉一件事是你做不出的。好!那么你舉一件事是你做不出的。” ” (1 1)如果有)如果有5 5只鴿子飛進兩只鴿籠,至少有只鴿子飛進兩只鴿籠,至少有3 3只只 鴿子在同一只鴿籠,對嗎?鴿子在同一只鴿籠,對嗎?(2 2)A A、B B、C C三個人,三個人,A A說說B B撒謊,撒謊,B
4、 B說說C C撒謊,撒謊,C C 說說A A、B B都撒謊。則都撒謊。則C C在撒謊嗎?為什么?在撒謊嗎?為什么?分析分析: :假設假設C C沒有撒謊沒有撒謊, , 則則A A、B B都撒謊都撒謊. . 由由A A撒謊撒謊, , 知知B B沒有沒有撒謊撒謊. . 那么那么假設假設C C沒有撒謊不成立沒有撒謊不成立, ,則則C C必定是在撒謊必定是在撒謊. .這與這與B B撒謊矛盾撒謊矛盾. .思考?思考? 先假設結論的反面是正確先假設結論的反面是正確的,然后通過邏輯推理,推出的,然后通過邏輯推理,推出與公理、已證的定理、定義或與公理、已證的定理、定義或已知條件相矛盾,說明假設不已知條件相矛盾,
5、說明假設不成立,從而得到原結論正確成立,從而得到原結論正確這種證明方法叫做這種證明方法叫做反證法的一般步驟反證法的一般步驟:假設命題結論不成立假設命題結論不成立假設不假設不成立成立假設命題結論假設命題結論反面成立反面成立與已知條件與已知條件矛盾矛盾假設假設推理得出的結論推理得出的結論與與定理,定義,定理,定義,公理公理矛盾矛盾所證命題成立所證命題成立你能說出下列結論的反面嗎你能說出下列結論的反面嗎? ?1.1.abab2.d2.d是正數是正數3.a03.a04.ab4.aba a不垂直于不垂直于b bd d不是正數不是正數, ,即即d0d0 a a0 0a不平行不平行b萬事開頭難,讓我們走好第
6、一步!萬事開頭難,讓我們走好第一步!常用的互為否定的表述方式:常用的互為否定的表述方式:至少有一個至少有一個至少有三個至少有三個至少有至少有n個個最多有一個最多有一個一個也沒有一個也沒有至多有兩個至多有兩個至多有至多有(n-1)個個至少有兩個至少有兩個1133nn11原詞語原詞語 否定詞否定詞 原詞語原詞語 否定詞否定詞 等于等于任意的任意的是是 至少有一個至少有一個 都是都是 至多有一個至多有一個 大于大于 至少有至少有n n個個 小于小于 至多有至多有n n個個 對所有對所有x,x,成立成立對任何對任何x x,不成立不成立準確地作出反設準確地作出反設( (即否定結論即否定結論) )是非常重
7、要的,是非常重要的,下面是一些常見的結論的否定形式下面是一些常見的結論的否定形式. . 不是不是不都是不都是不大于不大于大于或等于大于或等于一個也沒有一個也沒有至少有兩個至少有兩個至多有(至多有(n-1)個個至少有(至少有(n+1)個個存在某存在某x,不成立不成立存在某存在某x,成立成立不等于不等于某個某個寫出下列結論的反面情況:寫出下列結論的反面情況:(1)ab;(3)x是負數;是負數;(4)ab;(5)A是銳角;是銳角;(2)AB=CD; 2命題“三角形中最多只有一個內角是直角”的結論的否定是() A兩個內角是直角 B有三個內角是直角 C至少有兩個內角是直角 D沒有一個內角是直角 答案C
8、解析“最多只有一個”即為“至多一個”,反設應為“至少有兩個”,故應選C. 3如果兩個實數之和為正數,則這兩個數() A一個是正數,一個是負數 B兩個都是正數 C至少有一個正數 D兩個都是負數 答案C 解析假設兩個數都是負數,則兩個數之和為負數,與兩個數之和為正數矛盾,所以兩個實數至少有一個正數,故應選C. 二、填空題 4“任何三角形的外角都至少有兩個鈍角”的否定應是_ 答案存在一個三角形,其外角最多有一個鈍角 解析全稱命題的否定形式為特稱命題,而“至少有兩個”的否定形式為“至多有一個”故該命題的否定為“存在一個三角形,其外角最多有一個鈍角” 試一試試一試 求證:在一個三角形中,求證:在一個三角
9、形中,至少有一個內角小于或等至少有一個內角小于或等于于60.ABC已知:已知:求證:求證:證明:假設結論不成立,即:證明:假設結論不成立,即:A_ 60, B _ 60,C _ 60,則則A+B+C180 .這與這與_相矛盾相矛盾.所以所以_不成立,所求證的不成立,所求證的結論成立結論成立.三角形內角和等于三角形內角和等于180 假設假設試一試試一試: 證明:假設所求的結論不成立,即證明:假設所求的結論不成立,即 A_ 60 , B_60 , C _60 則則A+ B+ C180 這與這與_相矛盾相矛盾 所以所以_不成立,不成立, 所求證的結論成立所求證的結論成立 “三角形的三個內角之和等于三
10、角形的三個內角之和等于180 ”假設假設ABC用反證法證明用反證法證明(填空填空):在三角形的內角中在三角形的內角中,至少有一個角大于或等于至少有一個角大于或等于60 已知已知:A ,B ,C是是ABC的內角(如圖)的內角(如圖)求證求證:A , B , C中至少有一個角中至少有一個角大于或等于大于或等于60 所以假設錯誤,故原命題所以假設錯誤,故原命題成立成立ba 證明證明: 假設假設a不大于不大于b則則a 0,b0所以所以(1)若 a bab(2)若 a =ba = b,0,abab例1 證明:如果則0ab與已知矛盾0ab與已知矛盾二、應用新知二、應用新知否定要全面反證法的一般步驟反證法的
11、一般步驟 先假設命題不成立先假設命題不成立從假設出發(fā),經過推理從假設出發(fā),經過推理 得出矛盾得出矛盾 假設不成立假設不成立 所求證命題正確所求證命題正確 分清條件和結論分清條件和結論三歸納步驟三歸納步驟例例2 2 求證:求證: 是無理數是無理數。2 2證:假設 2是有理數,證:假設 2是有理數,m m則則存存在在互互質質的的整整數數m m,n n使使得得2 2 = =,n n m =2n m =2n2222 m = 2n m = 2n2 2m m 是是偶偶數數,從從而而m m必必是是偶偶數數,故故設設m m= =2 2k k(k kN N)22222222從而有4k = 2n ,即n = 2k
12、從而有4k = 2n ,即n = 2k2 2n 也是偶數,n 也是偶數,這與m,n互質矛盾!這與m,n互質矛盾!假設不成立,故假設不成立,故 是無理數。是無理數。2例例1 1:已知:一個整數的平方能被已知:一個整數的平方能被2 2整除,整除, 求證:這個數是偶數。求證:這個數是偶數。證明:假設證明:假設a a不是偶數,不是偶數, 則則a a是奇數,不妨設是奇數,不妨設a=2n+1(na=2n+1(n是整數是整數) ) a a2 2=(2n+1)=(2n+1)2 2=4n=4n2 2+4n+1=4n(n+1)+1+4n+1=4n(n+1)+1 a a2 2是奇數,與已知矛盾。是奇數,與已知矛盾。
13、 假設不成立,所以假設不成立,所以a a是偶數。是偶數。注:注:直接證明難以下手的命題直接證明難以下手的命題,改變其思維方向,改變其思維方向,從進行反面思考,問題可能解決得十分干脆。從進行反面思考,問題可能解決得十分干脆。例題例題例例2 2: 不可能成等差數列不可能成等差數列5,3,2注:注:否定型命題否定型命題( (命題的結論是命題的結論是“不可能不可能”,“不能表示為不能表示為”,“不是不是”,“不存不存在在” ” ,“不等于不等于”,“不具有某種性質不具有某種性質”等等) ) 常用反證法常用反證法解題反思:解題反思:證明本題時,你是怎么想到反證法的?證明本題時,你是怎么想到反證法的?反證
14、法中歸謬是核心步驟,本題中得到的邏輯矛盾是什么?反證法中歸謬是核心步驟,本題中得到的邏輯矛盾是什么?練習:練習:ABCCB證明:在中,若是直角,則一定是銳角。例例3 3 已知已知a0a0,證明,證明x x的方程的方程ax=bax=b有且只有有且只有一個根。一個根。1212則ax = b,ax = b則ax = b,ax = b1212ax = axax = ax1 12 2 a ax x - -a ax x = = 0 01 12 2 a a(x x - -x x ) = = 0 0 a a 0 012120,即 x -xx = xx -xx = x12與與xx 矛xx 矛盾盾故假設不成立,結論成立。故假設不成立,結論成立。證:由于證:由于a 0a 0,因此方程至少有一個根,因此方程至少有一個根x=b/ax=b/a,注注:結論中的有且只有結論中的有且只有(有且僅有有且僅有)形式出現形式出現, 是是唯一性問題唯一性問題,常用反證法常用反證法 如果方程不只一個根,不妨設如果方程不只一個根,不妨設x x1 1,x,x2 2 (x x1 1 x x2 2 ) )是是方程的兩個根方程的兩個根. . 證明:假設兩個數都不小于2,則2 .xy02 .1x12 .yxyy
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司股權轉讓代持協議
- 餐飲行業(yè)食品安全承諾免責協議
- 養(yǎng)殖場土地租賃合同
- 建設工程三方合同
- 軟件著作權授權許可及合作合同
- 股份制企業(yè)的合作與發(fā)展策略方案
- 單位職工聘用合同
- 電影拍攝合作合同
- 聘請電影導演合同書
- 物業(yè)意向性合作協議
- 2025年中考語文模擬試卷(含答案解析)
- 2025版校園樂器銷售代理與服務協議3篇
- 2024-2025年天津河西區(qū)七年級上學期期末道德與法治試題(含答案)
- 預制板粘貼碳纖維加固計算表格
- 2025年海南農墾自然資源開發(fā)集團有限公司筆試題
- 醫(yī)療垃圾轉運流程
- 礦棉板模板施工合同
- DB31∕T 1148-2019 水量計量差錯的退補水量核算方法
- 2025蛇年元旦晚會
- 延長石油社招筆試題庫
- 高中化學教材(人教版)課本實驗(回歸課本)
評論
0/150
提交評論