湖南省攸縣二中2019屆高三數學10月月考試題 文_第1頁
湖南省攸縣二中2019屆高三數學10月月考試題 文_第2頁
湖南省攸縣二中2019屆高三數學10月月考試題 文_第3頁
湖南省攸縣二中2019屆高三數學10月月考試題 文_第4頁
湖南省攸縣二中2019屆高三數學10月月考試題 文_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.攸縣二中2019屆高三10月月考數學試卷(文科)姓名:_班級:_一、選擇題:本大題共12小題,每小題5分,共60分. 在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知集合,則( )ABCD2已知復數(為虛數單位),則復數的虛部為( )ABCD3已知命題,則為( )A, B,C, D,4已知向量,則在方向上的投影為( )ABCD5若變量滿足則的最大值是( )A4 B9 C10 D126已知某幾何體的三視圖如圖所示,則該幾何體的體積為ABCD7我國古代數學著作孫子算經中有這樣一道算術題:“今有物不知其數,三三數之剩一,五五數之剩三,七七數之剩六,問物幾何?”人們把此類題目稱為“中國剩

2、余定理”若正整數N除以正整數m后的余數為n,則記為Nn(modm),例如102(mod4)現將該問題以程序框圖給出,執(zhí)行該程序框圖,則輸出的n等于()A13 B11 C15 D88已知且.若,則()ABCD9函數的部分圖象如圖所示,則的值為( )ABCD10已知的內角的對邊分別為,若,且,則( )A B C D11已知定義在上的函數滿足條件:對任意的,都有;對任意的且,都有;函數的圖象關于軸對稱,則下列結論正確的是()A BC D12已知函數,當時,不等式恒成立,則實數的取值范圍為()ABCD二、填空題:本大題共4小題,每小題5分,共20分.13等比數列的各項均為正數,且,則的值為_14已知,

3、則_.15已知曲線的一條切線為,則實數的值為_.16函數的圖象如圖所示,關于的方程有三個不同的實數解,則的取值范圍是_.三、解答題:本大題共6小題,共60分. 解答應寫出文字說明,證明過程或演算步驟17(本小題滿分12分)已知(),將的圖像向右平移個單位后,再保持縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到函數的圖像.(1)求函數的解析式;(2)若且,求的面積.18(本小題滿分12分)設數列的前項和為,且(1)求數列的通項公式;(2)設,求數列的前項和19(本小題滿分12分)在三棱錐中,底面,,是的中點,是線段上的一點,且,連接()求證:平面;()求點到平面的距離.20(本小題滿分12分)已知拋物線

4、上點到焦點的距離為()求拋物線方程;()點為準線上任意一點,為拋物線上過焦點的任意一條弦,設直線的斜率分別為,問是否存在實數,使得恒成立.若存在,求出的值;若不存在,請說明理由.21(本小題滿分12分)已知函數.(1)求函數的單調區(qū)間;(2)探究:是否存在實數,使得恒成立?若存在,求出的值;若不存在,請說明理由.四選答題:共10分.請考生在第22,23題中任選一題作答.如果多做,則按所做的第一題計分.22在平面直角坐標系中,直線的參數方程為(為參數)在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為()若曲線關于直線對稱,求的值;()若為曲線上兩點,且,求的最大值23選修45

5、:不等式選講設函數解不等式;(2)若關于的不等式的解集不是空集,求的取值范圍10月月考參考答案BACCC DADDD CD135141516171),的圖像向右平移個單位后,函數解析式變?yōu)?,則(2),;由正弦定理得,即解得,所以.18(1)由,()-得,又當時,即,(符合題意)是首項為1,公比為3 的等比數列,(2)由(1)得: ,-得:,19解:(1)因為,所以.又,所以在中,由勾股定理,得.因為,所以是的斜邊上的中線.所以是的中點.又因為是的中點,所以直線是的中位線,所以. 又因為平面,平面,所以平面(2)由(1)得,.又因為,.所以.又因為, 所以.易知,且, 所以.設點到平面的距離為,

6、則由,得,即, 解得.即點到平面的距離為.20(I)拋物線y2=2px(p0)的焦點為(,0),準線為x=,由拋物線的定義可知:4=3,p=2拋物線方程為y2=4x;(II)由于拋物線y2=4x的焦點F為(1,0),準線為x=1,設直線AB:x=my+1,與y2=4x聯立,消去x,整理得:y24my4=0,設A(x1,y1),B(x2,y2),P(1,t),有易知,而=2k3存在實數=2,使得k1+k2=k3恒成立211)依題意,令,解得,故,故當時,函數單調遞減,當時,函數單調遞增;故函數的單調減區(qū)間為,單調增區(qū)間為(2),其中,由題意知在上恒成立,由(1)可知,記,則,令,得.當變化時,的變化情況列表如下:,故,當且僅當時取等號,又,從而得到.22()直線的參數方程為(為參數),消去參數得直線普通方程為由,得曲線的直角坐標方程為,即,因為圓關于直線對稱,所以圓心在直線上,所以()由點在圓上,且,不妨設,則, 當,即時取等號,所以的最大值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論