![高中數(shù)學(人教版)選修2-3教學設(shè)計:122組合_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/13/a1e38281-e30c-49d9-8ec7-8306b30697b2/a1e38281-e30c-49d9-8ec7-8306b30697b21.gif)
![高中數(shù)學(人教版)選修2-3教學設(shè)計:122組合_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/13/a1e38281-e30c-49d9-8ec7-8306b30697b2/a1e38281-e30c-49d9-8ec7-8306b30697b22.gif)
![高中數(shù)學(人教版)選修2-3教學設(shè)計:122組合_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/13/a1e38281-e30c-49d9-8ec7-8306b30697b2/a1e38281-e30c-49d9-8ec7-8306b30697b23.gif)
![高中數(shù)學(人教版)選修2-3教學設(shè)計:122組合_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/13/a1e38281-e30c-49d9-8ec7-8306b30697b2/a1e38281-e30c-49d9-8ec7-8306b30697b24.gif)
![高中數(shù)學(人教版)選修2-3教學設(shè)計:122組合_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/13/a1e38281-e30c-49d9-8ec7-8306b30697b2/a1e38281-e30c-49d9-8ec7-8306b30697b25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、122組合教學目標:知識與技能:理解組合的意義,能寫出一些簡單問題的所有組合。明確組合與排列的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題。過程與方法:了解組合數(shù)的意義,理解排列數(shù)與組合數(shù)Cnm之間的聯(lián)系,掌握組合數(shù)公式,能運用組合數(shù)公式進行計算。情感、態(tài)度與價值觀:能運用組合要領(lǐng)分析簡單的實際問題,提高分析問題的能力。教學重點:組合的概念和組合數(shù)公式教學難點:組合的概念和組合數(shù)公式授課類型:新授課 課時安排:2課時 教 具:多媒體、實物投影儀 內(nèi)容分析:排列與組合都是研究從一些不同元素中任取元素,或排成一排或并成一組,并求有多少種不同方法的問題.排列與組合的區(qū)別在于問題是否與順序有關(guān).與
2、順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕?、組合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關(guān)系. 指導學生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通. 能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別. 學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關(guān)系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從
3、組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題. 排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據(jù)具體做事的過程,用數(shù)學的原理和語言加以表述.也可以說解排列、組合題就是從生活經(jīng)驗、知識經(jīng)驗、具體情景的出發(fā),正確領(lǐng)會問題的實質(zhì),抽象出“按部就班”的處理問題的過程.據(jù)筆者觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數(shù)學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規(guī)的做法).要解決這個問題,需要師生一道在分析問題時要根據(jù)實際情況,怎么做事就怎么分析
4、,若能借助適當?shù)墓ぞ?,模擬做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.教學過程:一、復習引入: 1分類加法計數(shù)原理:做一件事情,完成它可以有n類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法,在第n類辦法中有種不同的方法那么完成這件事共有 種不同的方法2.分步乘法計數(shù)原理:做一件事情,完成它需要分成n個步驟,做第一步有種不同的方法,做第二步有種不同的方法,做第n步有種不同的方法,那么完成這件事有 種不同的方法 3排列的概念:從個不同元素中,任?。ǎ﹤€元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個不同元素中取出個元素的一個排列4排列數(shù)的
5、定義:從個不同元素中,任?。ǎ﹤€元素的所有排列的個數(shù)叫做從個元素中取出元素的排列數(shù),用符號表示5排列數(shù)公式:()6階乘:表示正整數(shù)1到的連乘積,叫做的階乘規(guī)定7排列數(shù)的另一個計算公式:= 8.提出問題: 示例1:從甲、乙、丙3名同學中選出2名去參加某天的一項活動,其中1名同學參加上午的活動,1名同學參加下午的活動,有多少種不同的選法?示例2:從甲、乙、丙3名同學中選出2名去參加一項活動,有多少種不同的選法?引導觀察:示例1中不但要求選出2名同學,而且還要按照一定的順序“排列”,而示例2只要求選出2名同學,是與順序無關(guān)的引出課題:組合二、講解新課:1組合的概念:一般地,從個不同元素中取出個元素并
6、成一組,叫做從個不同元素中取出個元素的一個組合說明:不同元素;“只取不排”無序性;相同組合:元素相同例1判斷下列問題是組合還是排列(1)在北京、上海、廣州三個民航站之間的直達航線上,有多少種不同的飛機票?有多少種不同的飛機票價?(2)高中部11個班進行籃球單循環(huán)比賽,需要進行多少場比賽?(3)從全班23人中選出3人分別擔任班長、副班長、學習委員三個職務,有多少種不同的選法?選出三人參加某項勞動,有多少種不同的選法?(4)10個人互相通信一次,共寫了多少封信?(5)10個人互通電話一次,共多少個電話?問題:(1)1、2、3和3、1、2是相同的組合嗎?(2)什么樣的兩個組合就叫相同的組合2組合數(shù)的
7、概念:從個不同元素中取出個元素的所有組合的個數(shù),叫做從 個不同元素中取出個元素的組合數(shù)用符號表示3組合數(shù)公式的推導:(1)從4個不同元素中取出3個元素的組合數(shù)是多少呢?啟發(fā):由于排列是先組合再排列,而從4個不同元素中取出3個元素的排列數(shù)可以求得,故我們可以考察一下和的關(guān)系,如下: 組 合 排列 由此可知,每一個組合都對應著6個不同的排列,因此,求從4個不同元素中取出3個元素的排列數(shù),可以分如下兩步: 考慮從4個不同元素中取出3個元素的組合,共有個; 對每一個組合的3個不同元素進行全排列,各有種方法由分步計數(shù)原理得:,所以,(2)推廣:一般地,求從n個不同元素中取出m個元素的排列數(shù),可以分如下兩
8、步: 先求從n個不同元素中取出m個元素的組合數(shù); 求每一個組合中m個元素全排列數(shù),根據(jù)分步計數(shù)原理得:(3)組合數(shù)的公式:或 規(guī)定: .三、講解范例:例2用計算器計算解:由計算器可得 例3計算:(1); (2); (1)解: 35;(2)解法1:120 解法2:120例4求證:證明:例5設(shè) 求的值 解:由題意可得: ,解得, 或或,當時原式值為7;當時原式值為7;當時原式值為11所求值為4或7或11例6 一位教練的足球隊共有 17 名初級學員,他們中以前沒有一人參加過比賽按照足球比賽規(guī)則,比賽時一個足球隊的上場隊員是11人問: (l)這位教練從這 17 名學員中可以形成多少種學員上場方案? (
9、2)如果在選出11名上場隊員時,還要確定其中的守門員,那么教練員有多少種方式做這件事情?分析:對于(1),根據(jù)題意,17名學員沒有角色差異,地位完全一樣,因此這是一個從 17 個不同元素中選出11個元素的組合問題;對于( 2 ) ,守門員的位置是特殊的,其余上場學員的地位沒有差異,因此這是一個分步完成的組合問題解: (1)由于上場學員沒有角色差異,所以可以形成的學員上場方案有 C 手 12 376 (種) . (2)教練員可以分兩步完成這件事情:第1步,從17名學員中選出 n 人組成上場小組,共有種選法;第2步,從選出的 n 人中選出 1 名守門員,共有種選法所以教練員做這件事情的方法數(shù)有=1
10、36136(種).例7(1)平面內(nèi)有10 個點,以其中每2 個點為端點的線段共有多少條?(2)平面內(nèi)有 10 個點,以其中每 2 個點為端點的有向線段共有多少條?解:(1)以平面內(nèi) 10 個點中每 2 個點為端點的線段的條數(shù),就是從10個不同的元素中取出2個元素的組合數(shù),即線段共有 (條).(2)由于有向線段的兩個端點中一個是起點、另一個是終點,以平面內(nèi)10個點中每 2 個點為端點的有向線段的條數(shù),就是從10個不同元素中取出2個元素的排列數(shù),即有向線段共有(條).例8在 100 件產(chǎn)品中,有 98 件合格品,2 件次品從這 100 件產(chǎn)品中任意抽出 3 件 .(1)有多少種不同的抽法?(2)抽
11、出的 3 件中恰好有 1 件是次品的抽法有多少種? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少種?解:(1)所求的不同抽法的種數(shù),就是從100件產(chǎn)品中取出3件的組合數(shù),所以共有= 161700 (種). (2)從2 件次品中抽出 1 件次品的抽法有種,從 98 件合格品中抽出 2 件合格品的抽法有種,因此抽出的 3 件中恰好有 1 件次品的抽法有=9506(種). (3)解法 1 從 100 件產(chǎn)品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品兩種情況在第(2)小題中已求得其中1件是次品的抽法有種,因此根據(jù)分類加法計數(shù)原理,抽出的3 件中至少有一件是次品的抽法
12、有+=9 604 (種) . 解法2 抽出的3 件產(chǎn)品中至少有 1 件是次品的抽法的種數(shù),也就是從100件中抽出3 件的抽法種數(shù)減去3 件中都是合格品的抽法的種數(shù),即=161 700-152 096 = 9 604 (種). 說明:“至少”“至多”的問題,通常用分類法或間接法求解。變式:按下列條件,從12人中選出5人,有多少種不同選法?(1)甲、乙、丙三人必須當選; (2)甲、乙、丙三人不能當選;(3)甲必須當選,乙、丙不能當選; (4)甲、乙、丙三人只有一人當選;(5)甲、乙、丙三人至多2人當選; (6)甲、乙、丙三人至少1人當選;例9(1)6本不同的書分給甲、乙、丙3同學,每人各得2本,有
13、多少種不同的分法?解:(2)從5個男生和4個女生中選出4名學生參加一次會議,要求至少有2名男生和1名女生參加,有多少種選法?解:問題可以分成2類:第一類 2名男生和2名女生參加,有中選法;第二類 3名男生和1名女生參加,有中選法依據(jù)分類計數(shù)原理,共有100種選法錯解:種選法引導學生用直接法檢驗,可知重復的很多例104名男生和6名女生組成至少有1個男生參加的三人社會實踐活動小組,問組成方法共有多少種?解法一:(直接法)小組構(gòu)成有三種情形:3男,2男1女,1男2女,分別有,所以,一共有+100種方法解法二:(間接法)組合數(shù)的性質(zhì)1:一般地,從n個不同元素中取出個元素后,剩下個元素因為從n個不同元素
14、中取出m個元素的每一個組合,與剩下的n - m個元素的每一個組合一一對應,所以從n個不同元素中取出m個元素的組合數(shù),等于從這n個元素中取出n - m個元素的組合數(shù),即:在這里,主要體現(xiàn):“取法”與“剩法”是“一一對應”的思想證明:又 ,說明:規(guī)定:;等式特點:等式兩邊下標同,上標之和等于下標;此性質(zhì)作用:當時,計算可變?yōu)橛嬎?,能夠使運算簡化.例如=2002; 或2組合數(shù)的性質(zhì)2:+一般地,從這n+1個不同元素中取出m個元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有含有的組合是從這n個元素中取出m -1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個
15、根據(jù)分類計數(shù)原理,可以得到組合數(shù)的另一個性質(zhì)在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想證明: + 說明:公式特征:下標相同而上標差1的兩個組合數(shù)之和,等于下標比原下標多1而上標與大的相同的一個組合數(shù); 此性質(zhì)的作用:恒等變形,簡化運算 例11一個口袋內(nèi)裝有大小不同的7個白球和1個黑球,(1)從口袋內(nèi)取出3個球,共有多少種取法?(2)從口袋內(nèi)取出3個球,使其中含有1個黑球,有多少種取法?(3)從口袋內(nèi)取出3個球,使其中不含黑球,有多少種取法?解:(1),或,;(2);(3)例12(1)計算:;(2)求證:+解:(1)原式;證明:(2)右邊左邊例13解方程:(1);(2)
16、解方程:解:(1)由原方程得或,或, 又由得且,原方程的解為或上述求解過程中的不等式組可以不解,直接把和代入檢驗,這樣運算量小得多.(2)原方程可化為,即,解得或, 經(jīng)檢驗:是原方程的解 例14證明:。證明:原式左端可看成一個班有個同學,從中選出個同學組成興趣小組,在選出的個同學中,個同學參加數(shù)學興趣小組,余下的個同學參加物理興趣小組的選法數(shù)。原式右端可看成直接在個同學中選出個同學參加數(shù)學興趣小組,在余下的個同學中選出個同學參加物理興趣小組的選法數(shù)。顯然,兩種選法是一致的,故左邊=右邊,等式成立。例15證明:(其中)。證明:設(shè)某班有個男同學、個女同學,從中選出個同學組成興趣小組,可分為類:男同
17、學0個,1個,個,則女同學分別為個,個,0個,共有選法數(shù)為。又由組合定義知選法數(shù)為,故等式成立。例16證明:。證明:左邊=,其中可表示先在個元素里選個,再從個元素里選一個的組合數(shù)。設(shè)某班有個同學,選出若干人(至少1人)組成興趣小組,并指定一人為組長。把這種選法按取到的人數(shù)分類(),則選法總數(shù)即為原式左邊。現(xiàn)換一種選法,先選組長,有種選法,再決定剩下的人是否參加,每人都有兩種可能,所以組員的選法有種,所以選法總數(shù)為種。顯然,兩種選法是一致的,故左邊=右邊,等式成立。例17證明:。證明:由于可表示先在個元素里選個,再從個元素里選兩個(可重復)的組合數(shù),所以原式左端可看成在例3指定一人為組長基礎(chǔ)上,
18、再指定一人為副組長(可兼職)的組合數(shù)。對原式右端我們可分為組長和副組長是否是同一個人兩種情況。若組長和副組長是同一個人,則有種選法;若組長和副組長不是同一個人,則有種選法。共有+種選法。顯然,兩種選法是一致的,故左邊=右邊,等式成立。例18第17屆世界杯足球賽于2002年夏季在韓國、日本舉辦、五大洲共有32支球隊有幸參加,他們先分成8個小組循環(huán)賽,決出16強(每隊均與本組其他隊賽一場,各組一、二名晉級16強),這支球隊按確定的程序進行淘汰賽,最后決出冠亞軍,此外還要決出第三、四名,問這次世界杯總共將進行多少場比賽?答案是:,這題如果作為習題課應如何分析解:可分為如下幾類比賽:小組循環(huán)賽:每組有
19、6場,8個小組共有48場;八分之一淘汰賽:8個小組的第一、二名組成16強,根據(jù)抽簽規(guī)則,每兩個隊比賽一場,可以決出8強,共有8場;四分之一淘汰賽:根據(jù)抽簽規(guī)則,8強中每兩個隊比賽一場,可以決出4強,共有4場;半決賽:根據(jù)抽簽規(guī)則,4強中每兩個隊比賽一場,可以決出2強,共有2場;決賽:2強比賽1場確定冠亞軍,4強中的另兩隊比賽1場決出第三、四名 共有2場.綜上,共有場四、課堂練習: 1判斷下列問題哪個是排列問題,哪個是組合問題:(1)從4個風景點中選出2個安排游覽,有多少種不同的方法? (2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?2名同學進行乒乓球擂臺賽,決出
20、新的擂主,則共需進行的比賽場數(shù)為( ) 3如果把兩條異面直線看作“一對”,則在五棱錐的棱所在的直線中,異面直線有( ) 對 對 對 對4設(shè)全集,集合、是的子集,若有個元素,有個元素,且,求集合、,則本題的解的個數(shù)為 ( ) 5從位候選人中選出人分別擔任班長和團支部書記,有 種不同的選法6從位同學中選出人去參加座談會,有 種不同的選法7圓上有10個點:(1)過每2個點畫一條弦,一共可畫 條弦;(2)過每3個點畫一個圓內(nèi)接三角形,一共可畫 個圓內(nèi)接三角形8(1)凸五邊形有 條對角線;(2)凸五邊形有 條對角線9計算:(1);(2)10個足球隊進行單循環(huán)比賽,(1)共需比賽多少場?(2)若各隊的得分
21、互不相同,則冠、亞軍的可能情況共有多少種? 11空間有10個點,其中任何4點不共面,(1)過每3個點作一個平面,一共可作多少個平面?(2)以每4個點為頂點作一個四面體,一共可作多少個四面體?12壹圓、貳圓、伍圓、拾圓的人民幣各一張,一共可以組成多少種幣值?13寫出從這個元素中每次取出個的所有不同的組合答案:1. (1)組合, (2)排列 2. B 3. A 4. D 5. 30 6. 15 7. (1)45 (2) 120 8. (1)5(2) 9. 455; 10. 10; 2011. ; 12. 13. ; ; ; ; 五、小結(jié) :組合的意義與組合數(shù)公式;解決實際問題時首先要看是否與順序有關(guān),從而確定是排列問題還是組合問題,必要時要利用分類和分步計數(shù)原理 學生探究過程:(完成如下表格) 名稱內(nèi)容分類原理分步原理定 義 相同點 不同點 名 稱排 列組 合定義 種數(shù) 符號 計算公式 關(guān)系 性質(zhì) ,六、課
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45181-2024車聯(lián)網(wǎng)網(wǎng)絡安全異常行為檢測機制
- 2025年度二零二五年度豪華別墅租賃定金及維護協(xié)議
- 二零二五年度理發(fā)店轉(zhuǎn)讓合同-附帶店鋪裝修及經(jīng)營策略指導
- 二零二五年度砂石料運輸安全培訓及應急預案協(xié)議
- 基于大數(shù)據(jù)的小學數(shù)學教育分析
- 提升安保措施保障智慧旅游出行安全
- 專業(yè)育嬰師服務合同
- XX省重點水電工程擴建項目合同2025
- 個人股權(quán)轉(zhuǎn)讓合同書
- 產(chǎn)品售后保養(yǎng)服務合同樣本
- JJF(石化)007-2018鉛筆硬度計校準規(guī)范
- GB/T 13364-2008往復泵機械振動測試方法
- 植物的類群及演化
- 老年社會工作課件
- 最新記24小時出入量、護理文書書寫規(guī)范課件
- 普通生物學考試大綱
- DB23T 2714-2020 農(nóng)村生活垃圾非焚燒低溫處理設(shè)施大氣污染物排放標準
- 【人教版】免疫系統(tǒng)的組成和功能課件1
- 農(nóng)信社運營主管述職報告【三篇】
- 48個國際音標表(打印版)已整理
- 建標 198-2022 城市污水處理工程項目建設(shè)標準
評論
0/150
提交評論