版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),則下列說法正確的是()A. B.C. D.2.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.3.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.34.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.5.若復(fù)數(shù)z滿足,則()A. B. C. D.6.已知,,,,則()A. B. C. D.7.某校8位學(xué)生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學(xué)生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)8.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.9.已知向量,,則向量與的夾角為()A. B. C. D.10.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度11.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.12.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)與的圖象上存在關(guān)于軸的對稱點,則實數(shù)的取值范圍為______.14.已知角的終邊過點,則______.15.集合,,則_____.16.已知函數(shù),若,則的取值范圍是__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)求二面角的余弦值.18.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.19.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).20.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.21.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項和.22.(10分)一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關(guān)于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):,,,,.②參考公式:相關(guān)系數(shù),,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點睛】利用不等式性質(zhì)比較大小.要注意不等式性質(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.2.A【解析】
根據(jù)復(fù)數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復(fù)數(shù)的基本運算,屬于基礎(chǔ)題.3.C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎(chǔ)題.4.D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.5.D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.6.D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.7.A【解析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對這些知識的理解掌握水平.8.C【解析】
先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.9.C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標(biāo)運算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進(jìn)行計算.10.C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.11.C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.12.D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求得與關(guān)于軸對稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點,即方程有解.對分成三種情況進(jìn)行分類討論,由此求得實數(shù)的取值范圍.【詳解】因為關(guān)于軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關(guān)于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉(zhuǎn)化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設(shè),相切時,切點的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時,,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關(guān)于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【點睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識.14.【解析】
由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.15.【解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.16.【解析】
根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時,,,當(dāng)時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)連接交于點,由三角形中位線定理得,由此能證明平面.(2)以為坐標(biāo)原點,的方向為軸正方向,的方向為軸正方向,的方向為軸正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【詳解】證明:證明:連接交于點,則為的中點.又是的中點,連接,則.因為平面,平面,所以平面.(2)由,可得:,即所以又因為直棱柱,所以以點為坐標(biāo)原點,分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則且,可解得,令,得平面的一個法向量為,同理可得平面的一個法向量為,則所以二面角的余弦值為.【點睛】本題主要考查直線與平面平行、二面角的概念、求法等知識,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)答案不唯一,具體見解析(2)證明見解析【解析】
(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進(jìn)而得證.【詳解】(1)依題意,當(dāng)時,,①當(dāng)時,恒成立,此時在定義域上單調(diào)遞增;②當(dāng)時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對于時,總有.由此得【點睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19.(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可?!驹斀狻浚?)當(dāng)時,由復(fù)合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有,解得;同理,當(dāng)時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),①當(dāng)在上是單調(diào)增函數(shù),則,解得,檢驗符合;②當(dāng)在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有。【點睛】本題主要考查學(xué)生的應(yīng)用意識,利用所學(xué)知識分析解決新定義問題。20.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.21.(1)見解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項公式,判斷出,由此利用裂項求和法求得數(shù)列的前項和.【詳解】(1)所以數(shù)列是以3為首項,以3為公比的等比數(shù)列.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電工電子技術(shù)(第3版) 課件 2.1 正弦交流電的基本特征
- 項目投標(biāo)與招標(biāo)管理規(guī)范制度
- 總承包公司永臨結(jié)合做法選用圖冊
- 維修員工工作總結(jié)
- 心理健康教育直播課心得體會范文(30篇)
- 物業(yè)管理制度15篇
- 中國著名書法家簡介
- 【培訓(xùn)課件】節(jié)約里程法
- 傾斜角與斜率課件
- 2025屆貴州省平壩縣新啟航教育高三第一次調(diào)研測試數(shù)學(xué)試卷含解析
- 2025年電工技師考試題庫及答案
- 2024年校社聯(lián)副主席競選演講稿模版(3篇)
- 《體育場館照明方案》課件
- 中南大學(xué)攻防實驗室方案
- 上海市縣(2024年-2025年小學(xué)六年級語文)部編版競賽題(上學(xué)期)試卷及答案
- 2023年冬季山東高中學(xué)業(yè)水平合格考政治試題真題(含答案)
- 急救知識與技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年新疆巴音郭楞蒙古自治州衛(wèi)生學(xué)校
- 文藝復(fù)興經(jīng)典名著選讀智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
- 《風(fēng)電場項目經(jīng)濟(jì)評價規(guī)范》(NB-T 31085-2016)
- 勞務(wù)派遣勞務(wù)外包服務(wù)方案(技術(shù)方案)
- 2023年三級公共營養(yǎng)師《理論+技能》考試題庫(濃縮500多題)
評論
0/150
提交評論