王群勇xthreg命令_第1頁
王群勇xthreg命令_第2頁
王群勇xthreg命令_第3頁
王群勇xthreg命令_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、王群勇xthreg命令Fixed-effect panel threshold model using Statahelp xthreg (SJ15-1: st0373) 需要stata13及以上版本,2015年第一期 - xthreg - Estimate fixed-effect panel threshold modelSyntax命令: xthreg depvar indepvars if in, rx(varlist) qx(varname) thnum(#) grid(#) trim(numlist) bs(numlist) thlevel(#) gen(newvarname) n

2、oreg nobslog thgiven options where depvar is the dependent variable and indepvars are the regime-independent variables.Description xthreg fits fixed-effect panel threshold models based on the method proposed by Hansen (1999). xthreg uses XT xtreg to fit the fixed-effect panel threshold model given t

3、he threshold estimator. The fixed-effect panel threshold model requires balanced panel data, which is checked automatically by xthreg. The estimation and test of the threshold effect are computed in Mata.Options: rx(varlist) is the regime-dependent variable. Time-series operators are allowed. rx() i

4、s required. qx(varname) is the threshold variable. Time-series operators are allowed. qx() is required.門限變量 thnum(#) is the number of thresholds. In the current version (Stata 13), # must be equal to or less than 3. The default is thnum(1).門限個數(shù) grid(#) is the number of grid points. grid() is used to

5、 avoid consuming too much time when computing large samples. The default is grid(300).格點數(shù) trim(numlist) is the trimming proportion to estimate each threshold. The number of trimming proportions must be equal to the number of thresholds specified in thnum(). The default is trim(0.01) for all threshol

6、ds. For example, to fit a triple-threshold model, you may set trim(0.01 0.01 0.05).一個門限,設(shè)置一個數(shù)值(0.01);兩個門限設(shè)置兩個(0.01 0.05);三個門限,設(shè)置三個(0.01 0.01 0.05)。 bs(numlist) is the number of bootstrap replications. If bs() is not set, xthreg does not use bootstrap for the threshold-effect test.自舉法次數(shù) thlevel(#) sp

7、ecifies the confidence level, as a percentage, for confidence intervals of the threshold. The default is thlevel(95). gen(newvarname) generates a new categorical variable with 0, 1, 2, . for each regime. The default is gen(_cat). noreg suppresses the display of the regression result. nobslog suppres

8、ses the iteration process of the bootstrap. thgiven fits the model based on previous results. options are any options available for XT xtreg. Time-series operators are allowed in depvar, indepvars, rx(), and qx().Examples Setup . use hansen1999 Estimate a single-threshold model . xthreg i q1 q2 q3 d

9、1 qd1, rx(c1) qx(d1) thnum(1) trim(0.01) grid(400) bs(300) Estimate a triple-threshold model given the estimated result above . xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(3) trim(0.01 0.01 0.05) bs(0 300 300) thgiven . xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(3) trim(0.01 0.01 0.05) grid(400

10、) bs(300 300 300) Estimate a triple-threshold model directly . xthreg i q1 q2 q3 d1 qd1, rx(c1) qx(d1) thnum(3) trim(0.01 0.01 0.05) bs(300 300 300)繪圖: Plot the confidence interval using likelihood-ratio (LR) statistics . _matplot e(LR21), columns(1 2) yline(7.35, lpattern(dash) connect(direct) msiz

11、e(small) mlabp(0) mlabs(zero) ytitle(LR Statistics) xtitle(First Threshold) recast(line) name(LR21) nodraw . _matplot e(LR22), columns(1 2) yline(7.35, lpattern(dash) connect(direct) msize(small) mlabp(0) mlabs(zero) ytitle(LR Statistics) xtitle(Second Threshold) recast(line) name(LR22) nodraw . graph combine LR21 LR22, cols(1)Author Qunyong Wang Institute of Statistics and Econometrics Nankai University

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論