高中一年級數(shù)學(xué)函數(shù)題目和答案解析_第1頁
高中一年級數(shù)學(xué)函數(shù)題目和答案解析_第2頁
高中一年級數(shù)學(xué)函數(shù)題目和答案解析_第3頁
高中一年級數(shù)學(xué)函數(shù)題目和答案解析_第4頁
高中一年級數(shù)學(xué)函數(shù)題目和答案解析_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1函數(shù)解析式的特殊求法例1 已知f(x)是一次函數(shù), 且ff(x)=4x-1, 求f(x)的解析式例2 若,求f(x)例3 已知,求例4已知:函數(shù)的圖象關(guān)于點對稱,求的解析式例5 已知f(x)滿足,求2函數(shù)值域的特殊求法例1. 求函數(shù)的值域。例2. 求函數(shù)的值域。例3求函數(shù)y=(x+1)/(x+2)的值域例4. 求函數(shù)的值域。例1下列各組中的兩個函數(shù)是否為相同的函數(shù)? 2若函數(shù)的圖象經(jīng)過,那么的反函數(shù)圖象經(jīng)過點(A) (B)(C)(D)例3 已知函數(shù)對任意的滿足:;。(1)求:的值;(2)求證:是上的減函數(shù);(3)若,求實數(shù)的取值范圍。例4已知Z,Z,問是否存在實數(shù),使得(1),(2)同時成立

2、.證明題1.已知二次函數(shù)對于1、2R,且12時,求證:方程有不等實根,且必有一根屬于區(qū)間(1,2).答案1解:設(shè)f(x)=kx+b則 k(kx+b)+b=4x-1則 或 或2換元法:已知復(fù)合函數(shù)的表達式時,還可以用換元法求的解析式。與配湊法一樣,要注意所換元的定義域的變化。解法一(換元法):令t=則x=t-1, t1代入原式有 (x1) 解法二(定義法): 1 (x1)4代入法:求已知函數(shù)關(guān)于某點或者某條直線的對稱函數(shù)時,一般用代入法。解:設(shè)為上任一點,且為關(guān)于點的對稱點 則,解得: ,點在上 把代入得:整理得 例5構(gòu)造方程組法:若已知的函數(shù)關(guān)系較為抽象簡約,則可以對變量進行置換,設(shè)法構(gòu)造方程

3、組,通過解方程組求得函數(shù)解析式。已知 ,將中x換成得 ,×2-得 .值域求法例1 解:將函數(shù)配方得: 由二次函數(shù)的性質(zhì)可知:當(dāng)x=1時,當(dāng)時, 故函數(shù)的值域是:4,82. 判別式法例2. 解:原函數(shù)化為關(guān)于x的一元二次方程(1)當(dāng)時,解得:(2)當(dāng)y=1時,而故函數(shù)的值域為  當(dāng)函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。  例3求函數(shù)y=(x+1)/(x+2)的值域。  點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。  解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(12y)/(y1),其定義域為y1的實數(shù),故函數(shù)y的值域為

4、yy1,yR。  點評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學(xué)解題的重要方法之一。  練習(xí):求函數(shù)y=(10x+10-x)/(10x10-x)的值域。(答案:函數(shù)的值域為yy<1或y>1 5. 函數(shù)有界性法直接求函數(shù)的值域困難時,可以利用已學(xué)過函數(shù)的有界性,反客為主來確定函數(shù)的值域。 例4. 求函數(shù)的值域。解:由原函數(shù)式可得:解得:故所求函數(shù)的值域為例1(定義域不同)(定義域不同) (定義域、值域都不同)例3解: (1) 令,得令,得 (2)證明:設(shè)是上的任意兩個實數(shù),且,即,從而有, 則 即是上的減函數(shù) (

5、3)令,得 ,又,即有 又是上的減函數(shù) 即(A) 實數(shù)的取值范圍是例4分析:假設(shè)存在使得(1)成立,得到與的關(guān)系后與聯(lián)立,然后討論聯(lián)立的不等式組.解:假設(shè)存在實數(shù),使得,同時成立,則集合Z與集合Z分別對應(yīng)集合Z與Z,與對應(yīng)的直線與拋物線至少有一個公共點,所以方程組有解,即方程必有解.因此,又 由相加,得,即.將代入得,再將代入得,因此,將,代入方程得,解得Z.所以不存在實數(shù),使得(1),(2)同時成立.證明題11解:設(shè)F(),則方程與方程F()0等價F(1)F(2)F(1)·F(2),又F(1)·F(2)0故方程必有一根在區(qū)間(1,2)內(nèi).由于拋物線yF()在軸上、下方均有分布,所以此拋物線與軸相交于兩個不同的交點,即方程有兩個不等的實根,從而方程有兩個不等的實根,且必有一根屬于區(qū)間(1,2).點評:本題由于方程是,其中因為有表達式,所以解題中有的學(xué)生不理解函數(shù)圖像與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論