



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、感悟有效課堂的“精彩對話”圓柱的體積案例 最近,本人在小學教學設計看到一則“圓柱的體積”教學實錄精彩片段,它以一種全新的視角詮釋了新課標所倡導的理念,給我留下了較為深刻的印象?,F(xiàn)把它擷取下來與各位同行共賞。師:圓柱有大有小,你覺得圓柱體積應該怎樣計算呢?生:(絕大部分學生舉起了手)底面積乘高。師:那你們是怎樣理解這個計算方法的呢?生1:我是從書上看到的。(舉起的手放下了一大半。很明顯,大部分同學都看到或聽到這個結論,并不理解實質的涵義。但仍有幾位學生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順水推舟,讓他們
2、來講。) 生2:我是這樣思考的:長方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長方體、正方體的體積都可以用底面積乘高來計算,所以我想計算圓柱體的體積時也應該可以用底面積乘高吧!師:你能迅速地把圓柱體與以前學過的長方體、正方體聯(lián)系起來,進而聯(lián)想到圓柱體的體積計算方法。真行!當然這僅是你的猜測,要是再能證明就好了。生3:我可以證明。推導長方體體積公式時,我們是采用擺體積單位的方法,用每層個數(shù)(底面積)×層數(shù)(高)現(xiàn)在求圓柱體積我們也可以沿襲這種思路,在圓柱體內部同樣擺上合適的體積單位,用每層個數(shù)×層數(shù),每層的個數(shù)也就
3、是它的底面積,擺的層數(shù)也就是高。那不就證明了圓柱體積的計算公式就是用底面積乘高嗎? (教室里立刻響起了熱烈的掌聲,許多同學被他精彩的發(fā)言折服了,理性的思維散發(fā)出誘人的魅力。) 師:你真聰明,能用以前學過的知識解決今天的難題!(這時舉起的手更多了。)生4:我有個想法不知是否可行、在推導圓面積計算方法時,我們是把圓轉化成了長方形,圓柱的底面就是一個圓,所以我就想是否可以把圓柱體轉化成長方體呢?師:(翹起了大拇指)你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。生5:我還有一種想
4、法:我們可以把圓柱體看成是無數(shù)個同樣大小的圓片疊加而成的。那么圓柱體的體積就應該用每個圓片的面積×圓的個數(shù)。圓的個數(shù)也就相當于圓柱的高。所以我認為圓柱體的體積可以用每個圓的面積(底面積)×高。師:了不起的一種想法?。◣熐椴蛔越墓钠鹆苏啤#┥?:我看過爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個近似的圓柱體。我們可以把每根筷子看成一個長方體,那么扎成的近似圓柱體的體積應該是這二十個小長方體的體積之和。又因為它們具有同樣的高度,運用乘法分配律,就變成了這二十個小長方體的底面積之和×高。師:你真會思考問題!生7:我還有一種想法:學習圓的面積時我們知道,當圓
5、的半徑和一個正方形的邊長相等時,圓的面積約是這個正方形的3.14倍。把疊成這個圓柱體的這無數(shù)個圓都這樣分割,那么圓柱體的體積不也大約是這個長方體的體積的3.14倍嗎?長方體的體積用它的底面積×高,圓柱體的體積就在這基礎上再乘3.14,也就是用圓柱體的底面積×高。 生8:把圓柱體形狀的橡皮泥捏成等高長方體形狀的橡皮泥,長方體體積用底面積乘高來計算,所以計算圓柱體的體積也是用底面積乘高吧! 師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡單!整節(jié)課不時響起孩子們、聽課老師們熱烈的掌聲。 過去的數(shù)
6、學課堂教學,忠誠于學科,卻背棄了學生,體現(xiàn)著權利,卻忘記了民主,追求著效率,卻忘記了意義。而這個片斷折射出,新課標理念下的不再是教師一廂情愿的“獨白”,而是學生、數(shù)學材料、教師之間進行的一次次真情的“對話”。 現(xiàn)從“對話”的視角來賞析這則精彩的片段。一、“對話”喚發(fā)出學習熱情。 新課程標準指出:有意義的數(shù)學學習必須建立在學生的主觀愿望和知識經驗的基礎上,在這樣的氛圍中,學生的思考才能積極。在當今數(shù)字化、信息化非常發(fā)達的社會中,學生接受信息獲取知識的途徑非常多,圓柱體的體積計算方法對學生來說并不陌生,
7、如果教師再按傳統(tǒng)的教學程序(創(chuàng)設情境研究探討獲得結論)展開,學生易造成這樣的錯誤認識:認為自己已經掌握了這部分知識而失去對學習過程的熱情。而本課,教學伊始,教師提問“圓柱體的體積如何計算”,讓學生先行呈現(xiàn)已有的知識結論,在通過問題“你是怎樣理解這個公式的呢?”把學生的注意引向對公式意義的理解,學生積極主動的投入思維活動,喚發(fā)學習熱情。 二、“對話”迸發(fā)出智慧的火花 “水本無華,相蕩而生漣漪;石本無火,相擊始發(fā)靈光?!彼季S的激活、靈性的噴發(fā)源于對話的啟迪和碰撞。本課如果按照教材的設計:通過把圓柱體轉化為長方體,研究圓柱體和長方體間的關系,得出計算公式:底面積×高,經
8、歷這樣的學習過程學生的思維是千篇一律的,獲得的發(fā)展也是有限的。而這位教師對教材進行相應的拓展,先呈現(xiàn)公式,后提問“你是怎樣理解這個公式的呢?”,使學生的思維沿著各自獨特的理解“決堤而出”。三、“對話”贏得心靈的敞亮和溝通“真行!當然這僅是你的猜測,要是再能證明就好了?!薄澳阏媛斆?能用以前學過的知識解決今天的難題!”“你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體?!苯處煵粩嗟乜隙ㄖ鴮W生的每一種觀點,引燃學生的每一絲發(fā)現(xiàn)的火花;同時象一位節(jié)目主持人一樣,平和、真誠,傾聽、接納著學生的聲音,在課堂上,學生真是神了、奇了,說出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來。此情此景,我們不難看出,老師能注意蹲下身來與學生交流,注意尋求學生的聲音,讓學生在一種“零距離”的、活躍的心理狀態(tài)下敞亮心扉,放飛思想,進行著師生“視界融合”的真情對話,贏得心靈的敞亮和溝通。 數(shù)學教學在對話中進行,展示著民主與平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷漆標線合同范本
- 出售新舊彩鋼瓦合同范例
- 2024年蕪湖無為市投資促進發(fā)展有限公司招聘考試真題
- led電源合同范本
- 公司購銷合同范本
- 2024年清遠英德市市區(qū)學校選調教師(編制)考試真題
- 個人買賣定金合同范本
- 五人合伙工程合同范本
- 交通類ppp合同范本
- 代簽銷售合同范本
- 全球醫(yī)療旅游經濟的現(xiàn)狀與未來趨勢
- 2024年度儲能電站在建項目收購合作協(xié)議范本3篇
- 新建冷卻塔布水器項目立項申請報告
- 廣東省梅州市梅縣區(qū)2023-2024學年八年級上學期期末數(shù)學試題
- 2025屆江蘇省南通市海門市海門中學高三最后一模數(shù)學試題含解析
- 2024年世界職業(yè)院校技能大賽高職組“聲樂、器樂表演組”賽項參考試題庫(含答案)
- 2024數(shù)據(jù)中心綜合布線工程設計
- 胸外科講課全套
- 2024年下半年中煤科工集團北京華宇工程限公司中層干部公開招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2023年國家公務員錄用考試《申論》真題(副省卷)及答案解析
- 2025屆上海市寶山區(qū)行知中學物理高一第一學期期末檢測試題含解析
評論
0/150
提交評論