高二《完全平方公式》北師大版七年級數(shù)學(xué)_第1頁
高二《完全平方公式》北師大版七年級數(shù)學(xué)_第2頁
高二《完全平方公式》北師大版七年級數(shù)學(xué)_第3頁
高二《完全平方公式》北師大版七年級數(shù)學(xué)_第4頁
高二《完全平方公式》北師大版七年級數(shù)學(xué)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、高二|完全平方公式北師大版七年級數(shù)學(xué)                        一、教學(xué)目標(biāo):         經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推理能力;在變式中,拓展提高;通過積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生自主探究能力,勇于創(chuàng)新的精神和合作學(xué)習(xí)的習(xí)慣;重點(diǎn)是正

2、確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運(yùn)用;難點(diǎn)是完全平方公式的運(yùn)用。         二、教學(xué)過程:         1.檢查學(xué)生的“預(yù)習(xí)知識樹”,導(dǎo)入課題:         師:前面學(xué)習(xí)了平方差公式,同學(xué)們對平方差公式的結(jié)構(gòu)特點(diǎn)、運(yùn)用以及學(xué)習(xí)公式的意義有了初步的認(rèn)識。今天,我們繼續(xù)學(xué)習(xí)、研究另一種“乘法公式”完全平

3、方公式。請拿出你的“預(yù)習(xí)知識樹”,小組內(nèi)互查并交流,在預(yù)習(xí)中有疑問的同學(xué)請?jiān)儐枴?        (活動(dòng):老師巡視、檢查學(xué)生的預(yù)習(xí)情況,并解答學(xué)生在預(yù)習(xí)中存在的問題)生:(互查、討論“預(yù)習(xí)知識樹”,有問題的詢問問題。)師:(老師點(diǎn)評學(xué)生預(yù)習(xí)情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預(yù)習(xí)提到課前,利用“知識樹”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨(dú)立思考、自主學(xué)習(xí),也可合作交流、討論研究,這樣預(yù)習(xí)會(huì)更充分,聽講時(shí)就能有準(zhǔn)備、有選擇;一上課,老師就檢查“預(yù)習(xí)知識樹”,了解學(xué)生新課學(xué)習(xí)情況,適當(dāng)點(diǎn)撥,在課堂上留

4、出更多的時(shí)間大量拓展、提高,發(fā)展學(xué)生的能力。         2.自學(xué)檢測,制造通用工具:師:下面進(jìn)行自學(xué)檢測.計(jì)算:(x+3)2;(2x-5)2;(mn+t)2;(-4x+y2)2。         (活動(dòng):投影顯示練習(xí)題。)生:(四人到黑板上板演,答錯(cuò)了,由學(xué)生糾正,老師再點(diǎn)評。)師:觀察練習(xí),公式中的a、b可代表什么?         生:可以表示一個(gè)

5、數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式。         說明:點(diǎn)評時(shí),老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當(dāng)于公式中的a,哪部分相當(dāng)于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習(xí)平方差公式時(shí),學(xué)生應(yīng)該認(rèn)識到這個(gè)道理,在這里再次強(qiáng)化。         師:說得非常好,明確“公式中的a、b可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式”的變化規(guī)律,就能正確運(yùn)用公式

6、解題了。顯然,剛做的練習(xí)題是由公式變化來的,若是變下去,能變多少道題?         生:無數(shù)道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無數(shù)道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規(guī)律才能更好地解題。         師:你會(huì)變了嗎?請各小組編題。(活動(dòng):四人小組先在組內(nèi)討論、

7、交流,再推選完成最快的兩個(gè)小組出示題目,其他小組同學(xué)練習(xí)。)說明:引導(dǎo)學(xué)生現(xiàn)場出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗(yàn)證變化規(guī)律。         師:下面思考,如何計(jì)算:(a+b+c)2生1:可根據(jù)多項(xiàng)式乘以多項(xiàng)式來計(jì)算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。         師:不錯(cuò)。還有其他方法嗎?生2:也可以把其中的(a+b)兩項(xiàng)看成一項(xiàng),變成(a+b)+c2的形式,就能直接運(yùn)用完全平方公式了。  &

8、#160;      師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習(xí)。         生:(緊張地做題,同時(shí)找兩個(gè)學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會(huì)做嗎?         生:(齊答)會(huì)。師:怎么辦?生1:把其中(a+b)看做一項(xiàng),(c+d)看做一項(xiàng),還是利用完全平方公式解題。    

9、0;    生2:還有其他分組方式,如把(a+c)看做一項(xiàng),(b+d)看做一項(xiàng),也能直接運(yùn)用公式解題。         師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?         生:無數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個(gè)學(xué)生都會(huì)解這樣的題了。課下,請同學(xué)們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計(jì)算出來嗎? 

10、0;       (活動(dòng):投影顯示一組題目,如(a+b)3、(a+b)4)說明:這就是老師進(jìn)一步利用這個(gè)例子論證“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律。         3.通過大量的習(xí)題驗(yàn)證通用工具,學(xué)生并且自造通用工具。         師:通過前面的檢測,看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進(jìn)入達(dá)標(biāo)檢測。  

11、       (活動(dòng):投影顯示達(dá)標(biāo)檢測題)1.填空:         (2x+3y)2=_;(14a-1)2=116a2-_+1;當(dāng)x=5,y=2,則(x+y)(x-y)-(x-y)2=_。         2.計(jì)算:         (-2m-n)2;(2-3a2)(3a2-2);(-c

12、d+12)2;(n+3)2-n23.計(jì)算:(x+2y+3)(x+2y-3)生:(積極         、主動(dòng)地在作業(yè)本上完成上面練習(xí)題。)師:(巡視,批閱完成快的學(xué)生的作業(yè),最后集體點(diǎn)評,只講不會(huì)的。)說明:第2         題,可先變形為-(2m+n)2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計(jì)算;第2題將(2-3a2)變形為-(3a2-2),原式可轉(zhuǎn)化為-(3a2-2)2,直接運(yùn)用公式計(jì)算;第2

13、題把(n+3)看做a         、n看做b,逆用平方差公式也是一種解法,同時(shí)訓(xùn)練學(xué)生的逆向思維;第3題是下節(jié)課訓(xùn)練內(nèi)容,在這里可以提前,引導(dǎo)學(xué)生通過變形,得出(x+2y+3)(x+2y-3)=(x+2y)+3·(x+2y)-3=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進(jìn)一步驗(yàn)證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學(xué)生能較熟練掌握,逐步達(dá)到腦算的層次,水到渠成,能力自然提高,學(xué)生就會(huì)自造“通用工具”

14、了。         4.嫁接“知識樹”,推薦作業(yè)。師:本節(jié)課你有什么收獲?還有什么問題嗎?         (活動(dòng):再次投影本節(jié)課“知識樹”。)生:這節(jié)課我們學(xué)習(xí)、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項(xiàng)式也可以是多項(xiàng)式,能運(yùn)用公式解題了,能力上又有新的提高.師:課下完成本節(jié)課的作業(yè).投影顯示思考題:計(jì)算(a+b+c)2、(a+b+c+d)2的結(jié)果,觀察有什么規(guī)律,感興趣的同學(xué)還可計(jì)算(a+b)3、(a+b)4的結(jié)果,你又能發(fā)現(xiàn)什么規(guī)律.預(yù)習(xí)指導(dǎo):課本第38-39頁內(nèi)容,重點(diǎn)研究例3兩個(gè)題目的解題方法,能嘗試獨(dú)自解答課后隨堂練習(xí)或習(xí)題,設(shè)計(jì)下節(jié)課“知識樹”,優(yōu)化本單元“知識樹”。說明:本環(huán)節(jié)是將本節(jié)課“知識樹”      

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論