高中數(shù)學(xué) 2.2.1對數(shù)與對數(shù)運算(三)教案 新A版必修1_第1頁
高中數(shù)學(xué) 2.2.1對數(shù)與對數(shù)運算(三)教案 新A版必修1_第2頁
高中數(shù)學(xué) 2.2.1對數(shù)與對數(shù)運算(三)教案 新A版必修1_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

.3.2.1對數(shù)及其運算三教學(xué)目的:掌握對數(shù)的換底公式教學(xué)重點:掌握對數(shù)的換底公式教學(xué)過程:1、首先可以通過實例研究當一個對數(shù)式的底數(shù)改變時,整個對數(shù)式會發(fā)生什么變化?如求 設(shè) ,寫成指數(shù)式是 ,取以 為底的對數(shù)得 即在這個等式中,底數(shù)3變成 后對數(shù)式將變成等式右邊的式子一般地 關(guān)于對數(shù)換底公式的證明方法有很多,這里可以仿照剛剛詳細的例子計算過程證明對數(shù)換底公式,證明的根本思路就是借助指數(shù)式換底公式的意義是把一個對數(shù)式的底數(shù)改變可將不同底問題化為同底,便于使用運算法那么由換底公式可得:1    2 2、例題:1、 證明:證明:設(shè) ,那么:,從而 ; , ,即:。獲證2、:求證:證明:由換底公式 ,由等比定理得:3、設(shè),且,1° 求證:;2° 比較的大小。1° 證明:設(shè),取對數(shù)得: ,;2° ,又, 。小結(jié):本節(jié)課學(xué)習了對數(shù)的換底公式課后作業(yè):習題2.2A組第11 、12題.y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論