高中數(shù)學(xué)基本不等式知識(shí)點(diǎn)歸納及練習(xí)題_第1頁(yè)
高中數(shù)學(xué)基本不等式知識(shí)點(diǎn)歸納及練習(xí)題_第2頁(yè)
高中數(shù)學(xué)基本不等式知識(shí)點(diǎn)歸納及練習(xí)題_第3頁(yè)
高中數(shù)學(xué)基本不等式知識(shí)點(diǎn)歸納及練習(xí)題_第4頁(yè)
高中數(shù)學(xué)基本不等式知識(shí)點(diǎn)歸納及練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高中數(shù)學(xué)基本不等式的巧用1基本不等式:(1)基本不等式成立的條件:a0,b0.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)ab時(shí)取等號(hào)2幾個(gè)重要的不等式(1)a2b22ab(a,bR);(2)2(a,b同號(hào));(3)ab2(a,bR);(4)2(a,bR)3算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a0,b0,則a,b的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個(gè)正數(shù)的算術(shù)平均數(shù)大于或等于它的幾何平均數(shù)4利用基本不等式求最值問(wèn)題已知x0,y0,則(1)如果積xy是定值p,那么當(dāng)且僅當(dāng)xy時(shí),xy有最小值是2.(簡(jiǎn)記:積定和最小)(2)如果和xy是定值p,那么當(dāng)且僅當(dāng)xy時(shí),xy有最大值是.(簡(jiǎn)記:和定積最大) 一個(gè)技巧

2、運(yùn)用公式解題時(shí),既要掌握公式的正用,也要注意公式的逆用,例如a2b22ab逆用就是ab;(a,b0)逆用就是ab2(a,b0)等還要注意“添、拆項(xiàng)”技巧和公式等號(hào)成立的條件等 兩個(gè)變形(1)2ab(a,bR,當(dāng)且僅當(dāng)ab時(shí)取等號(hào));(2) (a0,b0,當(dāng)且僅當(dāng)ab時(shí)取等號(hào))這兩個(gè)不等式鏈用處很大,注意掌握它們 三個(gè)注意(1)使用基本不等式求最值,其失誤的真正原因是其存在前提“一正、二定、三相等”的忽視要利用基本不等式求最值,這三個(gè)條件缺一不可(2)在運(yùn)用基本不等式時(shí),要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中“正”“定”“等”的條件(3)連續(xù)使用公式時(shí)取等號(hào)的條件很嚴(yán)格,要求同

3、時(shí)滿足任何一次的字母取值存在且一致應(yīng)用一:求最值例1:求下列函數(shù)的值域(1)y3x 2 (2)yx解題技巧:技巧一:湊項(xiàng)例1:已知,求函數(shù)的最大值。技巧二:湊系數(shù)例1. 當(dāng)時(shí),求的最大值。技巧三: 分離例3. 求的值域。技巧四:換元技巧五:注意:在應(yīng)用最值定理求最值時(shí),若遇等號(hào)取不到的情況,應(yīng)結(jié)合函數(shù)的單調(diào)性。例:求函數(shù)的值域。練習(xí)求下列函數(shù)的最小值,并求取得最小值時(shí),x 的值. (1) (2) (3) 2已知,求函數(shù)的最大值.;3,求函數(shù)的最大值.條件求最值1.若實(shí)數(shù)滿足,則的最小值是 .變式:若,求的最小值.并求x,y的值技巧六:整體代換:多次連用最值定理求最值時(shí),要注意取等號(hào)的條件的一致

4、性,否則就會(huì)出錯(cuò)。2:已知,且,求的最小值。變式: (1)若且,求的最小值(2)已知且,求的最小值技巧七、已知x,y為正實(shí)數(shù),且x 21,求x的最大值.技巧八:已知a,b為正實(shí)數(shù),2baba30,求函數(shù)y的最小值.技巧九、取平方5、已知x,y為正實(shí)數(shù),3x2y10,求函數(shù)W的最值.應(yīng)用二:利用基本不等式證明不等式1已知為兩兩不相等的實(shí)數(shù),求證:1)正數(shù)a,b,c滿足abc1,求證:(1a)(1b)(1c)8abc例6:已知a、b、c,且。求證:應(yīng)用三:基本不等式與恒成立問(wèn)題例:已知且,求使不等式恒成立的實(shí)數(shù)的取值范圍。 應(yīng)用四:均值定理在比較大小中的應(yīng)用:例:若,則的大小關(guān)系是 .解:(1)y

5、3x 22 值域?yàn)椋?) (2)當(dāng)x0時(shí),yx22;當(dāng)x0時(shí), yx= ( x)2=2值域?yàn)椋ǎ?2,+)解:因,所以首先要“調(diào)整”符號(hào),又不是常數(shù),所以對(duì)要進(jìn)行拆、湊項(xiàng),當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立,故當(dāng)時(shí),。評(píng)注:本題需要調(diào)整項(xiàng)的符號(hào),又要配湊項(xiàng)的系數(shù),使其積為定值。解析:由知,利用基本不等式求最值,必須和為定值或積為定值,此題為兩個(gè)式子積的形式,但其和不是定值。注意到為定值,故只需將湊上一個(gè)系數(shù)即可。當(dāng),即x2時(shí)取等號(hào) 當(dāng)x2時(shí),的最大值為8。評(píng)注:本題無(wú)法直接運(yùn)用基本不等式求解,但湊系數(shù)后可得到和為定值,從而可利用基本不等式求最大值。解析一:本題看似無(wú)法運(yùn)用基本不等式,不妨將分子配方湊

6、出含有(x1)的項(xiàng),再將其分離。當(dāng),即時(shí),(當(dāng)且僅當(dāng)x1時(shí)取“”號(hào))解析二:本題看似無(wú)法運(yùn)用基本不等式,可先換元,令t=x1,化簡(jiǎn)原式在分離求最值。當(dāng),即t=時(shí),(當(dāng)t=2即x1時(shí)取“”號(hào))。評(píng)注:分式函數(shù)求最值,通常直接將分子配湊后將式子分開或?qū)⒎帜笓Q元后將式子分開再利用不等式求最值。即化為,g(x)恒正或恒負(fù)的形式,然后運(yùn)用基本不等式來(lái)求最值。解:令,則因,但解得不在區(qū)間,故等號(hào)不成立,考慮單調(diào)性。因?yàn)樵趨^(qū)間單調(diào)遞增,所以在其子區(qū)間為單調(diào)遞增函數(shù),故。所以,所求函數(shù)的值域?yàn)?。分析:“和”到“積”是一個(gè)縮小的過(guò)程,而且定值,因此考慮利用均值定理求最小值, 解: 都是正數(shù),當(dāng)時(shí)等號(hào)成立,由及得

7、即當(dāng)時(shí),的最小值是6錯(cuò)解:,且, 故 。錯(cuò)因:解法中兩次連用基本不等式,在等號(hào)成立條件是,在等號(hào)成立條件是即,取等號(hào)的條件的不一致,產(chǎn)生錯(cuò)誤。因此,在利用基本不等式處理問(wèn)題時(shí),列出等號(hào)成立條件是解題的必要步驟,而且是檢驗(yàn)轉(zhuǎn)換是否有誤的一種方法。正解:,當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立,又,可得時(shí), 。分析:因條件和結(jié)論分別是二次和一次,故采用公式ab。同時(shí)還應(yīng)化簡(jiǎn)中y2前面的系數(shù)為 , xx x·下面將x,分別看成兩個(gè)因式:x· 即x·x 分析:這是一個(gè)二元函數(shù)的最值問(wèn)題,通常有兩個(gè)途徑,一是通過(guò)消元,轉(zhuǎn)化為一元函數(shù)問(wèn)題,再用單調(diào)性或基本不等式求解,對(duì)本題來(lái)說(shuō),這種途徑是

8、可行的;二是直接用基本不等式,對(duì)本題來(lái)說(shuō),因已知條件中既有和的形式,又有積的形式,不能一步到位求出最值,考慮用基本不等式放縮后,再通過(guò)解不等式的途徑進(jìn)行。法一:a, ab·b 由a0得,0b15令tb+1,1t16,ab2(t)34t28 ab18 y 當(dāng)且僅當(dāng)t4,即b3,a6時(shí),等號(hào)成立。法二:由已知得:30aba2b a2b2 30ab2令u則u22u300, 5u3 3,ab18,y點(diǎn)評(píng):本題考查不等式的應(yīng)用、不等式的解法及運(yùn)算能力;如何由已知不等式出發(fā)求得的范圍,關(guān)鍵是尋找到之間的關(guān)系,由此想到不等式,這樣將已知條件轉(zhuǎn)換為含的不等式,進(jìn)而解得的范圍.變式:1.已知a>

9、0,b>0,ab(ab)1,求ab的最小值。2.若直角三角形周長(zhǎng)為1,求它的面積最大值。解法一:若利用算術(shù)平均與平方平均之間的不等關(guān)系,本題很簡(jiǎn)單 2 解法二:條件與結(jié)論均為和的形式,設(shè)法直接用基本不等式,應(yīng)通過(guò)平方化函數(shù)式為積的形式,再向“和為定值”條件靠攏。W0,W23x2y2·102·10()2·()2 10(3x2y)20 W2 變式: 求函數(shù)的最大值。解析:注意到與的和為定值。又,所以當(dāng)且僅當(dāng)=,即時(shí)取等號(hào)。 故。評(píng)注:本題將解析式兩邊平方構(gòu)造出“和為定值”,為利用基本不等式創(chuàng)造了條件??傊?,我們利用基本不等式求最值時(shí),一定要注意“一正二定三相等”,同時(shí)還要

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論