北師大版數(shù)八上第五章二元一次方程組5.2《求解二元一次方程組》優(yōu)質(zhì)教案(6頁(yè))_第1頁(yè)
北師大版數(shù)八上第五章二元一次方程組5.2《求解二元一次方程組》優(yōu)質(zhì)教案(6頁(yè))_第2頁(yè)
北師大版數(shù)八上第五章二元一次方程組5.2《求解二元一次方程組》優(yōu)質(zhì)教案(6頁(yè))_第3頁(yè)
北師大版數(shù)八上第五章二元一次方程組5.2《求解二元一次方程組》優(yōu)質(zhì)教案(6頁(yè))_第4頁(yè)
北師大版數(shù)八上第五章二元一次方程組5.2《求解二元一次方程組》優(yōu)質(zhì)教案(6頁(yè))_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、.第五章 二元一次方程組2. 求解二元一次方程組第1課時(shí) 華縣華新中學(xué) 吳浪華【教學(xué)目的】1、知識(shí)與才能:1會(huì)用代入消元法解二元一次方程組。2理解“消元思想,初步體會(huì)數(shù)學(xué)研究中“化未知為的化歸思想。2、過(guò)程與方法:1將二元一次方程中的一個(gè)字母用含另一個(gè)字母的代數(shù)式表示。2會(huì)闡述用代入法解二元一次方程組的根本思路通過(guò)“代入到達(dá)“消元的目的。3解一元一次方程的一航步驟:去分母,去括號(hào),移項(xiàng),合并同類項(xiàng)、未知數(shù)的系數(shù)化為1。3、情感態(tài)度與價(jià)值觀:提供適當(dāng)?shù)那榫?,吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;在合作學(xué)習(xí)中,學(xué)會(huì)交流與合作。【教學(xué)重點(diǎn)、難點(diǎn)】重點(diǎn):用代入消元法解二元一次方程組。難點(diǎn):在解題過(guò)程中

2、體會(huì)“消元思想和“化未知為的化歸思想。一.學(xué)生起點(diǎn)分析學(xué)生的知識(shí)技能根底:在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)掌握了有理數(shù)、整式的運(yùn)算、一元一次方程等知識(shí),理解了二元一次方程、二元一次方程組及其解等根本概念,具備了進(jìn)一步學(xué)習(xí)二元一次方程組解法的根本才能。學(xué)生活動(dòng)經(jīng)歷根底:同學(xué)之間有互相交流合作、自主探究的經(jīng)歷,在活動(dòng)過(guò)程中有總結(jié)經(jīng)歷、歸納知識(shí)點(diǎn)的才能。二.教學(xué)任務(wù)分析?二元一次方程組的解法?是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)上第五章?二元一次方程組?的第二節(jié),要求學(xué)生能利用消元法解二元一次方程組,本節(jié)表達(dá)的消元方法有代入消元法、加減消元法,教材安排了2個(gè)課時(shí)分別完成.本節(jié)課為第1課時(shí).代入消元法,

3、從教科書從實(shí)際問(wèn)題出發(fā),通過(guò)引導(dǎo)學(xué)生經(jīng)歷自主探究和合作交流的活動(dòng),學(xué)習(xí)二元一次方程組的解法代入消元法.代入消元法是解二元一次方程組的根本方法之一,它要求從兩個(gè)方程中選擇一個(gè)系數(shù)比較簡(jiǎn)單的方程,將它轉(zhuǎn)換成用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,然后代入另一個(gè)方程,求出這個(gè)未知數(shù)的值,最后將這個(gè)未知數(shù)的值代入已變形的那個(gè)方程,求出另一個(gè)未知數(shù)的值.在求出方程組的解之后,可以對(duì)求出的解進(jìn)展檢驗(yàn),這樣可以防止和糾正方程變形和計(jì)算過(guò)程中可能出現(xiàn)的錯(cuò)誤.二元一次方程組的解法,其本質(zhì)思想是消元,體會(huì)“化未知為的化歸思想。三.教學(xué)過(guò)程設(shè)計(jì):本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):情境引入;第二環(huán)節(jié):探究新

4、知;第三環(huán)節(jié):穩(wěn)固新知;第四環(huán)節(jié):練習(xí)進(jìn)步;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè).第一環(huán)節(jié):情境引入一、引入上節(jié)課我們的老牛和小馬的包裹誰(shuí)的多的問(wèn)題,經(jīng)過(guò)大家的共同努力,得出了二元一次方程組 x-y=2 到底誰(shuí)的包裹多呢? x+1=2y-1 這就需要解這個(gè)二元一次方程組.二、一元一次方程我們會(huì)解, 二元一次方程組如何解呢?我們大家知道二元一次方程只需要消去一個(gè)未知數(shù)就可變?yōu)橐辉淮畏匠?那么我們就發(fā)現(xiàn):由得y=x-2由于方程組一樣的字母表示同一個(gè)未知數(shù),所以方程中的y也等于x-2,可以用x-2代替方程中的y.這樣就得到大家會(huì)解的一元一次方程了.x+1=2x-2-1這個(gè)方程我會(huì)解: 解得 x=

5、7 將 x=7代入 中,得到y(tǒng)=5所以老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹。第二環(huán)節(jié):探究新知 解方程組 2x+3y=16 x+4y=13 老師先分析:此題不同于例1, 即用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),式不能直接代入,那么我們應(yīng)當(dāng)怎樣處理才能轉(zhuǎn)化為例1,式這樣的形式呢? 請(qǐng)同學(xué)答復(fù):應(yīng)先對(duì)式進(jìn)展恒等變化,把它化為例1中式那樣的形式.分小組合作完成上述例題,請(qǐng)兩個(gè)小組的代表上黑板上來(lái)板演解:由,得 x=13-4y 將代入,得213-4y+3y=16 26-8y+3y=16 -5y=-10 y=2 將代入,得 x=5 將 x=7代入 中,得到y(tǒng)=2所以原方程組的解是 x=5 y=2在學(xué)生

6、解決的根底上,引導(dǎo)學(xué)生進(jìn)展比較:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)絡(luò)?對(duì)你解二元一次方程組有何啟示?先讓學(xué)生獨(dú)立考慮,然后在學(xué)生充分考慮的前提下,進(jìn)展小組討論,在此根底上由學(xué)生代表答復(fù),老師適時(shí)地引導(dǎo)與補(bǔ)充,力求通過(guò)學(xué)生觀察、考慮與討論后能得出以下的一些要點(diǎn).提醒學(xué)生進(jìn)展檢驗(yàn),即把求出的解代入原方程組,必然使原方程組中的每個(gè)方程都同時(shí)成立,如不成立,那么可知解有誤下面我們?cè)囍眠@種方法來(lái)解答上一節(jié)的“誰(shuí)的包裹多的問(wèn)題.放手讓學(xué)生用已經(jīng)獲取的經(jīng)歷去解決新的問(wèn)題,由學(xué)生自己完成,讓兩個(gè)學(xué)生在黑板上標(biāo)準(zhǔn)的板書,老師巡視:發(fā)現(xiàn)學(xué)生的閃光點(diǎn)以及存在的問(wèn)題并適時(shí)的

7、加以輔導(dǎo),以期學(xué)生在解答的過(guò)程中領(lǐng)會(huì)“代入消元法的真實(shí)含義和“化歸的數(shù)學(xué)思想.目的:通過(guò)學(xué)生自己比照、考慮、發(fā)現(xiàn),讓學(xué)生驚喜的發(fā)現(xiàn)“溫故而知新,將新知融入舊知,體會(huì)“化未知為的化歸思想的神奇,培養(yǎng)學(xué)生獨(dú)立獲取知識(shí)的愿望和才能.設(shè)計(jì)效果:通過(guò)學(xué)生自己的觀察、比較、總結(jié)出二元一次方程組的解法,從中體會(huì)到解方程組中“消元的本質(zhì).第三環(huán)節(jié):穩(wěn)固新知內(nèi)容:1.例:解以下方程組:1 2 老師先分析:例1, 用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),用式直接代入, 1解:將代入,得:.解得:.把代入,得:.所以原方程組的解為: 例2不同于例1, 即用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),式不能直接代入,那

8、么我們應(yīng)當(dāng)怎樣處理才能轉(zhuǎn)化為例1式這樣的形式呢? 請(qǐng)同學(xué)答復(fù)應(yīng)先對(duì)式進(jìn)展恒等變化,把它化為例1中式那樣的形式.分小組合作完成上述例題,請(qǐng)兩個(gè)小組的代表上黑板上來(lái)板演 2由,得:. 將代入,得:.解得:將y=2代入,得:所以原方程組的解是題需先進(jìn)展恒等變形,老師要鼓勵(lì)學(xué)生通過(guò)自主探究與交流獲得求解,在求解過(guò)程中學(xué)生消元的詳細(xì)方法可能不同,所以教學(xué)中不必強(qiáng)求解答過(guò)程的統(tǒng)一,但要提出如何選擇將哪個(gè)方程恒等變形、消去哪個(gè)未知數(shù)能使運(yùn)算較為簡(jiǎn)單.讓學(xué)生在解題中進(jìn)展考慮老師在解完后要引導(dǎo)學(xué)生再次就解出的結(jié)果進(jìn)展考慮,判斷它們是否是原方程組的解.促使學(xué)生進(jìn)一步理解方程組解的含義以及學(xué)會(huì)檢驗(yàn)方程組解的方法.2

9、.考慮總結(jié):老師根據(jù)學(xué)生的實(shí)際情況進(jìn)展生與生、師與生之間的互相補(bǔ)充與評(píng)價(jià),并提出下面的問(wèn)題給這種解方程組的方法取個(gè)什么名字好?上面解方程組的根本思路是什么?主要步驟有哪些?我們觀察例題的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡(jiǎn)單和代入后化簡(jiǎn)比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?由學(xué)生分組討論,老師深化參與到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探究、討論過(guò)程中的獨(dú)特想法,請(qǐng)學(xué)生小組的代表答復(fù)或?qū)W生舉手答復(fù),其余學(xué)生可以補(bǔ)充,力求讓學(xué)生可以答復(fù)出以下的要點(diǎn),老師要板書要點(diǎn),在學(xué)生答復(fù)時(shí)注意進(jìn)展積極評(píng)價(jià)1.在解上面兩個(gè)二

10、元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用含其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入另一個(gè)未變形的方程,從而由“二元轉(zhuǎn)化為“一元,到達(dá)消元的目的.我們將這種方法叫代入消元法.2.解二元一次方程組的根本思路是消元,把“二元變?yōu)椤耙辉?3.解上述方程組的步驟:第一步:在方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠?,將它的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái).第二步:把此代數(shù)式代入沒(méi)有變形的另一個(gè)方程中,可得一個(gè)一元一次方程.第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程一般代入變形后的方程,求得另一個(gè)未知數(shù)的值

11、.第五步:把方程組的解表示出來(lái).第六步:檢驗(yàn)口算或筆算在草稿紙上進(jìn)展,即把求得的解代入每一個(gè)方程看是否成立.4.用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的系數(shù)的絕對(duì)值是1的方程進(jìn)展變形;假設(shè)未知數(shù)的系數(shù)的絕對(duì)值都不是1,那么選取系數(shù)的絕對(duì)值較小的方程變形.目的:進(jìn)一步熟悉解二元一次方程組的根本思路,純熟解二元一次方程組的根本步驟和過(guò)程,并能對(duì)二元一次方程組的解進(jìn)展檢驗(yàn).設(shè)計(jì)效果:通過(guò)本環(huán)節(jié)的學(xué)習(xí),學(xué)生可以獨(dú)立地運(yùn)用代入消元法解二元一次方程組.第四環(huán)節(jié):練習(xí)進(jìn)步內(nèi)容: 1.教材隨堂練習(xí)在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過(guò)自主探究與交流,各個(gè)學(xué)生消元的詳細(xì)方法可能不同,可以不必強(qiáng)調(diào)解答過(guò)程統(tǒng)一

12、.可能會(huì)出現(xiàn)整體代換的思想,假設(shè)有條件可以提出,為下一課做點(diǎn)鋪墊也可以2.補(bǔ)充練習(xí):用代入消元法解以下方程組: 1 2 注:2題可以用整體代入法來(lái)解,把第二個(gè)方程變?yōu)?,再將它代入第一個(gè)方程,得;3題分?jǐn)?shù)線有括號(hào)功能;目的:對(duì)本節(jié)知識(shí)進(jìn)展穩(wěn)固練習(xí).設(shè)計(jì)效果:通過(guò)練習(xí),穩(wěn)固和純熟了運(yùn)用代入消元法解二元一次方程組的方法.第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生互相交流總結(jié)解二元一次方程組的根本思路是“消元,即把“二元變?yōu)椤耙辉?解二元一次方程組的第一種解法代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新 的體會(huì),知道“學(xué)而時(shí)習(xí)之.設(shè)計(jì)效果:學(xué)生可以在課堂上暢所欲言,并通過(guò)自己的歸納總結(jié),進(jìn)一步穩(wěn)固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)1.課本習(xí)題5.2第1題2.預(yù)習(xí)下一課內(nèi)容四.教學(xué)設(shè)計(jì)反思優(yōu)化課堂教學(xué)過(guò)程的最終目的是為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論