高中數(shù)學(xué)必修一至必修五知識點總結(jié)_第1頁
高中數(shù)學(xué)必修一至必修五知識點總結(jié)_第2頁
高中數(shù)學(xué)必修一至必修五知識點總結(jié)_第3頁
高中數(shù)學(xué)必修一至必修五知識點總結(jié)_第4頁
高中數(shù)學(xué)必修一至必修五知識點總結(jié)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高中數(shù)學(xué)必修1至必修5知識點總結(jié)(復(fù)習(xí)專用) 人教版富寧一中必修1第一章 集合與函數(shù)概念一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性: 1.元素的確定性;2.元素的互異性;3.元素的無序性非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R關(guān)于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 aA二、集合間的基本關(guān)系任何一個集合是它本身的子集。AA真子集:如果AB,且B A那就說集合A是集合B的真子集,記作

2、A B(或B A)3. 不含任何元素的集合叫做空集,記為規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運算1交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集(即找公共部分)記作AB(讀作”A交B”),即AB=x|xA,且xB2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。(即A和B中所有的元素)記作:AB(讀作”A并B”),即AB=x|xA,或xB4、全集與補集(1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)(即除去A剩下的元素組

3、成的集合)四、函數(shù)的有關(guān)概念定義域補充能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (6)實際問題中的函數(shù)的定義域還要保證實際問題有意義. (又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域4了解區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半

4、開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示7函數(shù)單調(diào)性(1)增函數(shù)設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量a,b,當(dāng)a<b時,都有f(a)<f(b),那么就說f(x)在區(qū)間D上是增函數(shù)。區(qū)間D稱為y=f(x)的單調(diào)增區(qū)間(睇清楚課本單調(diào)區(qū)間的概念)如果對于區(qū)間D上的任意兩個自變量的值a,b,當(dāng)a<b 時,都有f(a)f(b),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意:1 函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);2 必須是對于區(qū)間D內(nèi)的任意兩個自變量a,b;當(dāng)a<b時

5、,總有f(a)<f(b) 。(2) 圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減 函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法:任取a,bD,且a<b;2 作差f(a)f(b);3 變形(通常是因式分解和配方);4 定號(即判斷差f(a)f(b)的正負(fù));5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性) (B)圖象法(從圖象上看升降)_ (C)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)fg(x)的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單

6、調(diào)性密切相關(guān) 注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8函數(shù)的奇偶性(1)偶函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(x)=f(x),那么f(x)就叫做偶函數(shù)(2)奇函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(x)=f(x),那么f(x)就叫做奇函數(shù)注意:1、 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。2、 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)

7、于原點對稱)3、具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;2 確定f(x)與f(x)的關(guān)系;3 作出相應(yīng)結(jié)論:若f(x) = f(x) 或 f(x)f(x) = 0,則f(x)是偶函數(shù);若f(x) =f(x) 或 f(x)f(x) = 0,則f(x)是奇函數(shù)注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)有時判定f(-x)=±f(x)比較困難

8、,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .10函數(shù)最大(?。┲担ǘx見課本)(1)、利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值. (2)、利用圖象求函數(shù)的最大(小)值 (3)、利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞增,在區(qū)間b,c上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞減,在區(qū)間b,c上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);第二章 基本初等函數(shù)一、指數(shù)函數(shù),0的正分?jǐn)?shù)指數(shù)冪等于0

9、,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義3實數(shù)指數(shù)冪的運算性質(zhì)(1)·;(2);(3)(二)指數(shù)函數(shù)及其性質(zhì)1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential function),其中x是自變量,函數(shù)的定義域為R注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和12、指數(shù)函數(shù)的圖象和性質(zhì)a>10<a<1圖象特征函數(shù)性質(zhì)向x、y軸正負(fù)方向無限延伸函數(shù)的定義域為R圖象關(guān)于原點和y軸不對稱非奇非偶函數(shù)函數(shù)圖象都在x軸上方函數(shù)的值域為R+函數(shù)圖象都過定點(0,1)自左向右看,圖象逐漸上升自左向右看,圖象逐漸下降增函數(shù)減函數(shù)在第一象限內(nèi)的圖象縱坐標(biāo)都大于1在第一象限內(nèi)的

10、圖象縱坐標(biāo)都小于1在第二象限內(nèi)的圖象縱坐標(biāo)都小于1在第二象限內(nèi)的圖象縱坐標(biāo)都大于1注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:(1)在a,b上,值域是或;(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);(3)對于指數(shù)函數(shù),總有;(4)當(dāng)時,若,則;二、對數(shù)函數(shù)(一)對數(shù)1對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:( 底數(shù), 真數(shù), 對數(shù)式)說明: 注意底數(shù)的限制,且; ; 注意對數(shù)的書寫格式兩個重要對數(shù): 常用對數(shù):以10為底的對數(shù); 自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù)對數(shù)式與指數(shù)式的互化對數(shù)式 指數(shù)式對數(shù)底數(shù) 冪底數(shù)對數(shù) 指數(shù)真數(shù) 冪(二)對數(shù)的運算性質(zhì)如果,且,那么:(1)·;

11、(2);(3) 注意:換底公式(,且;,且;)利用換底公式推導(dǎo)下面的結(jié)論(1);(2)(二)對數(shù)函數(shù)1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+)注意: 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。(2)對數(shù)函數(shù)和指數(shù)函數(shù)的聯(lián)系是x和y的位置如:, 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù)2、對數(shù)函數(shù)的性質(zhì):a>10<a<1圖象特征函數(shù)性質(zhì)函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域為(0,)圖象關(guān)于原點和y軸不對稱非奇非偶函數(shù)向y軸正負(fù)方向無限延伸函數(shù)的值域為R函數(shù)圖象都過定點(1,0)自左向右看,圖象逐漸上升自左向右看,圖象逐漸下降增函數(shù)減函

12、數(shù)第一象限的圖象縱坐標(biāo)都大于0第一象限的圖象縱坐標(biāo)都大于0第二象限的圖象縱坐標(biāo)都小于0第二象限的圖象縱坐標(biāo)都小于0三、冪函數(shù)1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù)2、冪函數(shù)性質(zhì)歸納(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(1,1);(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù)特別地,當(dāng)時,冪函數(shù)的圖象下凸;當(dāng)時,冪函數(shù)的圖象上凸;(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù)在第一象限內(nèi),當(dāng) 從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時, 圖象在軸上方無限地逼近軸正半軸第三章 函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點1、函數(shù)零點的概念:對于函數(shù),把使成立

13、的實數(shù) 叫做函數(shù)的零點。2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點3、函數(shù)零點的求法:求函數(shù)的零點: (代數(shù)法)求方程的實數(shù)根; (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點必修2第一章 立體幾何初步1.特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線) 2.柱體、錐體、臺體的體積公式 3. 球體的表面積和體積公式:; 4空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)注:正視圖反映了物體的

14、高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。3、空間幾何體的直觀圖斜二測畫法斜二測畫法特點:原來與x軸平行的線段仍然與x平行且長度不變; 原來與y軸平行的線段仍然與y平行,長度為原來的一半。第二章 直線與平面的位置關(guān)系2.1空間點、直線、平面之間的位置關(guān)系1 平面含義:平面是無限延展的2 三個公理:(1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi).符號表示為LA·ALBL => L ABC·B·A·公理1作用:判斷直線是否在平面內(nèi).(2)公理2:過不在一條直線上的三點,有且只有一個平面。符號表示為:

15、A、B、C三點不共線 => 有且只有一個平面,使A、B、C。公理2作用:確定一個平面的依據(jù)。P·L(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。符號表示為:P =>=L,且PL公理3作用:判定兩個平面是否相交的依據(jù).2.1.2 空間中直線與直線之間的位置關(guān)系1 空間的兩條直線有如下三種關(guān)系:共面直線 相交直線:同一平面內(nèi),有且只有一個公共點;平行直線: 同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點。2 公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設(shè)a、b、c是三條直線=>acabcb強(qiáng)調(diào):公

16、理4實質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3 等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補.4 注意點: a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點O一般取在兩直線中的一條上; 兩條異面直線所成的角(0, ); 當(dāng)兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作ab; 兩條直線互相垂直,有共面垂直與異面垂直兩種情形; 計算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。2.1.3 2.1.4 空間中直線與平面、平面與平面之間的位置關(guān)系

17、1、直線與平面有三種位置關(guān)系:(1)直線在平面內(nèi) 有無數(shù)個公共點(2)直線與平面相交 有且只有一個公共點(3)直線在平面平行 沒有公共點指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用a 來表示a a=A a2.2.直線、平面平行的判定及其性質(zhì)2.2.1 直線與平面平行的判定1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:a b => aab2.2.2 平面與平面平行的判定1、兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。符號表示:a b ab = P =>

18、;ab2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩個平面平行。2.2.3 2.2.4直線與平面、平面與平面平行的性質(zhì)1、直線與平面平行的性質(zhì)定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:a a => ab= b作用:利用該定理可解決直線間的平行問題。2、兩個平面平行的性質(zhì)定理:如果兩個平行的平面同時與第三個平面相交,那么它們的交線平行。符號表示:= a => ab = b作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質(zhì)2.3.1直線與平面

19、垂直的判定1、定義:如果直線L與平面內(nèi)的任意一條直線都垂直,我們就說直線L與平面互相垂直,記作L,直線L叫做平面的垂線,平面叫做直線L的垂面。如圖,直線與平面垂直時,它們唯一公共點P叫做垂足。 P a L2、直線與平面垂直的判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。注意點: a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。2.3.2平面與平面垂直的判定1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形A 梭 l B 2、二面角的記法:二面角-l-或-AB-3、兩個平面互相垂直的判定

20、定理:一個平面過另一個平面的垂線,則這兩個平面垂直。2.3.3 2.3.4直線與平面、平面與平面垂直的性質(zhì)1、直線與平面垂直的性質(zhì)定理:垂直于同一個平面的兩條直線平行。2、兩個平面垂直的性質(zhì)定理: 兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。第三章 直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°180°(2)直線的斜率定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸

21、的傾斜程度。當(dāng)直線l與x軸平行或重合時, =0°, k = tan0°=0;當(dāng)直線l與x軸垂直時, = 90°, k 不存在.當(dāng)時,; 當(dāng)時,; 當(dāng)時,不存在。過兩點的直線的斜率公式: ( P1(x1,y1),P2(x2,y2),x1x2)注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。(3)直線方程點斜式:直線斜率k,且過點注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是

22、y=y1。當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。斜截式:,直線斜率為k,直線在y軸上的截距為b兩點式:()直線兩點,截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。一般式:(A,B不全為0)注意:各式的適用范圍 特殊的方程如:平行于x軸的直線:(b為常數(shù)); 平行于y軸的直線:(a為常數(shù)); (6)兩直線平行與垂直 當(dāng),時,;注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(7)兩條直線的交點 相交交點坐標(biāo)即方程組的一組解。方程組無解 ; 方程組有無數(shù)解與重合(8)兩點間

23、距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點,則 (9)點到直線距離公式:一點到直線的距離(10)兩平行直線距離公式已知兩條平行線直線和的一般式方程為:,:,則與的距離為第四章 圓與方程1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;點與圓的位置關(guān)系:當(dāng)>,點在圓外當(dāng)=,點在圓上當(dāng)<,點在圓內(nèi)(2)一般方程當(dāng)時,方程表示圓,此時圓心為,半徑為(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);另外要注意多

24、利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。3、直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況:(1)設(shè)直線,圓,圓心到l的距離為 ,則有;(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】 (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2 必修三:輾轉(zhuǎn)相除法與更相減損術(shù)(1)輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:用較大的數(shù)m除以較小的數(shù)n得到

25、一個商和一個余數(shù); 若0,則n為m,n的最大公約數(shù);若0,則用除數(shù)n除以余數(shù)得到一個商和一個余數(shù);若0,則為m,n的最大公約數(shù);若0,則用除數(shù)除以余數(shù)得到一個商和一個余數(shù); 依次計算直至0,此時所得到的即為所求的最大公約數(shù)。(2)更相減損術(shù)任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。(3)輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相

26、對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到8:秦九韶算法與排序 (1)秦九韶算法概念: f(x)=anxn+an-1xn-1+.+a1x+a0求值問題f(x)=anxn+an-1xn-1+.+a1x+a0=( anxn-1+an-1xn-2+.+a1)x+a0 =( anxn-2+an-1xn-3+.+a2)x+a1)x+a0 =.=(.( anx+an-1)x+an-2)x+.+a1)x+a0求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1然后由內(nèi)向外逐

27、層計算一次多項式的值,即v2=v1x+an-2 v3=v2x+an-3 . vn=vn-1x+a0這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。第二章:統(tǒng)計1:簡單隨機(jī)抽樣類別共同點各自特點相互關(guān)系適用范圍簡單隨機(jī)抽樣抽樣過程中每個個體被抽取的機(jī)會相等從總體中逐個抽取總體中的個體數(shù)較少系統(tǒng)抽樣將總體均勻分成幾部分,按事先確定的規(guī)則在各部分抽取再起時部分抽樣時采用簡單隨機(jī)抽樣總體中的個數(shù)較多分成抽樣經(jīng)總體分成幾層,分層進(jìn)行抽取各層抽樣時采用簡單隨機(jī)抽樣總體由差異明顯的幾部分組成4:用樣本的數(shù)字特征估計總體的數(shù)字特征(1)樣本均值:(2)樣本標(biāo)準(zhǔn)差:用樣本估計總體時,如果抽樣的方法

28、比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。(3)眾數(shù):在樣本數(shù)據(jù)中,頻率分布最大值所對應(yīng)的樣本數(shù)據(jù)(可以是多個)。(4)中位數(shù):在樣本數(shù)據(jù)中,累計頻率為1.5時所對應(yīng)的樣本數(shù)據(jù)值(只有一個)。第三章:概 率2:概率的基本性質(zhì)(1)必然事件概率為1,不可能事件概率為0,因此0P(A)1(2)事件的包含、并事件、交事件、相等事件(3)若AB為不可能事件,即AB=,那么稱事件A與事件B互斥;(4)若AB為不可能事件,AB為必然事件,那么稱事件A與事件B互為對立事件;(5)當(dāng)事件A與B互斥時,滿足加法公式:P(AB)= P(A)+ P(B);

29、若事件A與B為對立事件,則AB為必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B)(6)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形: 事件A發(fā)生且事件B不發(fā)生;事件A不發(fā)生且事件B發(fā)生;事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;事件A發(fā)生B不發(fā)生;事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。3:基本事件(1)基本事件:基本事件是在一次試驗中所有可能發(fā)生的基本結(jié)果中的一個,它是試驗中不能再分的最簡單的隨機(jī)事件。(2)基本事件的特點:任何兩個基本事件

30、是互斥的任何事件(除不可能事件外)都可以表示成基本事件的和。4:古典概型:(1)古典概型的條件:古典概型是一種特殊的數(shù)學(xué)模型,這種模型滿足兩個條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。所有基本事件必須是有限個。(2)古典概型的解題步驟;求出總的基本事件數(shù);求出事件A所包含的基本事件數(shù),然后利用公式5:幾何概型(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:;(3)幾何概型的特點:試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;每個基本事件出現(xiàn)的可能性相等注意:幾何概型也是一種概率模型,它與古典

31、概型的區(qū)別是試驗的可能結(jié)果不是有限個。其特點是在一個區(qū)域內(nèi)均勻分布,所以隨機(jī)事件的概率大小與隨機(jī)事件所在區(qū)域的形狀位置無關(guān),值域該區(qū)域的大小有關(guān)。如果隨即事件所在區(qū)域是一個單點,由于單點的長度、面積、體積均為0,則它出現(xiàn)的概率為0,但它不是不可能事件;如果一個隨機(jī)事件所在區(qū)域是全部區(qū)域扣除一個單點,則它出現(xiàn)的概率為1,但他不是必然事件。綜上可得:必然事件的概率為1;不可能事件的概率為0。 概率為1的事件不一定為必然事件;概率為0的事件不一定為不可能事件。必修4第一章 三角函數(shù)(初等函數(shù)二)3、與角終邊相同的角的集合為7、弧度制與角度制的換算公式:,8、若扇形的圓心角為,半徑為,弧長為,周長為,

32、面積為,則,9、設(shè)是一個任意大小的角,的終邊上任意一點的坐標(biāo)是,它與原點的距離是,則,10、三角函數(shù)在各象限的符號:第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正11、三角函數(shù)線:,Pvx y A O M T 12、同角三角函數(shù)的基本關(guān)系:;15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函數(shù)性質(zhì) 圖象定義域值域最值當(dāng)時,;當(dāng) 時,當(dāng)時, ;當(dāng)時,既無最大值也無最小值周期性奇偶性奇函數(shù)偶函數(shù)奇函數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù)在上是增函數(shù);在上是減函數(shù)在上是增函數(shù)對稱性對稱中心對稱軸對稱中心對稱軸對稱中心無對稱軸第二章 平面向量16、向量:既有大小,又有方向的量數(shù)量:只

33、有大小,沒有方向的量有向線段的三要素:起點、方向、長度零向量:長度為的向量單位向量:長度等于個單位的向量平行向量(共線向量):方向相同或相反的非零向量零向量與任一向量平行相等向量:長度相等且方向相同的向量17、向量加法運算:三角形法則的特點:首尾相連平行四邊形法則的特點:共起點三角形不等式:運算性質(zhì):交換律:; 結(jié)合律:;坐標(biāo)運算:設(shè),則18、向量減法運算:三角形法則的特點:共起點,連終點,方向指向被減向量坐標(biāo)運算:設(shè),則設(shè)、兩點的坐標(biāo)分別為,則23、平面向量的數(shù)量積:零向量與任一向量的數(shù)量積為性質(zhì):設(shè)和都是非零向量,則當(dāng)與同向時,;當(dāng)與反向時,;或坐標(biāo)運算:設(shè)兩個非零向量,則若,則,或設(shè),則設(shè)、都是非零向量,是與的夾角,則第三章 三角恒等變換24、兩角和與差的正弦、余弦和正切公式:;();()25、二倍角的正弦、余弦和正切公式:(,)26、,其中必修5第一章 解三角形1、正弦定理:在中,、分別為角、的對邊,為的外接圓的半徑,則有2、正弦定理的變形公式:,;,;(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對的角,求其余的量。2、已知兩角和一邊,求其余的量。)3、三角形面積公式:4、余弦定理:在中,有,5、余弦定理的推論:,(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論