《走向高考》2013-高三數(shù)學(xué)(人教A版)總復(fù)習(xí)同步練習(xí)10-9隨機變量的數(shù)字特征與正態(tài)分布(理)(共15頁)_第1頁
《走向高考》2013-高三數(shù)學(xué)(人教A版)總復(fù)習(xí)同步練習(xí)10-9隨機變量的數(shù)字特征與正態(tài)分布(理)(共15頁)_第2頁
《走向高考》2013-高三數(shù)學(xué)(人教A版)總復(fù)習(xí)同步練習(xí)10-9隨機變量的數(shù)字特征與正態(tài)分布(理)(共15頁)_第3頁
《走向高考》2013-高三數(shù)學(xué)(人教A版)總復(fù)習(xí)同步練習(xí)10-9隨機變量的數(shù)字特征與正態(tài)分布(理)(共15頁)_第4頁
《走向高考》2013-高三數(shù)學(xué)(人教A版)總復(fù)習(xí)同步練習(xí)10-9隨機變量的數(shù)字特征與正態(tài)分布(理)(共15頁)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上10-9隨機變量的數(shù)字特征與正態(tài)分布(理)基礎(chǔ)鞏固強化1.(2011·煙臺模擬)設(shè)隨機變量服從正態(tài)分布N(0,1),若P(>1)p,則P(1<<0)()A.p B.pC12p D1p答案B解析N(0,1),P(<1)P(>1)p,P(1<<0)12p(>1)p.2(2012·浙江嘉興模擬)甲、乙兩人分別獨立參加某高校自主招生考試,若甲、乙能通過面試的概率都是,則面試結(jié)束后通過的人數(shù)X的數(shù)學(xué)期望是()A. B. C1 D.答案A解析依題意,X的取值為0、1、2.且P(X0)(1)×(1),P(

2、X1)×(1)(1)×,P(X2)×.故X的數(shù)學(xué)期望E(X)0×1×2×,選A.3(2011·鹽城模擬)某人射擊一次擊中的概率為,經(jīng)過3次射擊,此人至少有兩次擊中目標(biāo)的概率為()A. B. C. D.答案A解析該人3次射擊,恰有兩次擊中目標(biāo)的概率是P1C·()2·,三次全部擊中目標(biāo)的概率是P2C·()3,所以此人至少有兩次擊中目標(biāo)的概率是PP1P2C·()2·C·()3.4(2011·福州調(diào)研)已知某一隨機變量的概率分布列如下,且E()6.3,則a的值為(

3、)4a9P0.50.1bA.5 B6 C7 D8答案C解析由0.50.1b1知,b0.4,由E()4×0.5a×0.19×0.46.3知,a7,故選C.5(2012·杭州質(zhì)檢)體育課的排球發(fā)球項目考試的規(guī)則是:每位學(xué)生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止設(shè)學(xué)生一次發(fā)球成功的概率為p(p0),發(fā)球次數(shù)為X,若X的數(shù)學(xué)期望E(X)>1.75,則p的取值范圍是()A(0,) B(,1)C(0,) D(,1)答案C解析由已知條件可得P(X1)p,P(X2)(1p)p,P(X3)(1p)2p(1p)3(1p)2,則E(X)P(X1)

4、2P(X2)3P(X3)p2(1p)p3(1p)2p23p3>1.75,解得p>或p<,又由p(0,1),可得p(0,),故應(yīng)選C.6已知隨機變量,滿足21,且B(10,p),若E()8,則D()()A0.5 B0.8 C0.2 D0.4答案D解析E()10p8,p0.8,D()10p(1p)10×0.8×0.21.6,又D()D(21)4D(),D()0.4.7(2011·濱州模擬)有一批產(chǎn)品,其中有12件正品和4件次品,從中任取3件,若表示取到次品的件數(shù),則E()_.答案解析分布列如下:0123PE()0×1×2×

5、;3×.8如果B(100,),當(dāng)P(k)取得最大值時,k_.答案50解析P(k)Ck·100kC100,由組合數(shù)的性質(zhì)知,當(dāng)k50時取到最大值9(2011·龍巖月考)袋中有3個黑球,1個紅球從中任取2個,取到一個黑球得0分,取到一個紅球得2分,則所得分?jǐn)?shù)的數(shù)學(xué)期望E()_.答案1解析P(0),P(2),E()0×2×1.10(2012·聊城市模擬)某學(xué)校數(shù)學(xué)興趣小組有10名學(xué)生,其中有4名女學(xué)生;英語興趣小組有5名學(xué)生,其中有3名女學(xué)生,現(xiàn)采用分層抽樣方法,從數(shù)學(xué)興趣小組、英語興趣小組中共抽取3名學(xué)生參加科技節(jié)活動(1)求從數(shù)學(xué)興趣小

6、組、英語興趣小組各抽取的人數(shù);(2)求從數(shù)學(xué)興趣小組抽取的學(xué)生中恰有1名女學(xué)生的概率;(3)記表示抽取的3名學(xué)生中男學(xué)生數(shù),求的分布列及數(shù)學(xué)期望解析(1)因為數(shù)學(xué)興趣小組人數(shù):英語興趣小組人數(shù)10:52:1,從數(shù)學(xué)興趣小組和英語興趣小組中抽取3人,則抽取數(shù)學(xué)小組的人數(shù)為2人,英語小組的人數(shù)為1人(2)從數(shù)學(xué)興趣小組中抽取2人恰有一名女生的概率P.(3)隨機變量的可能取值為0、1、2、3.P(0)·;P(1)··;P(2)··;P(3)·,所以的分布列為0123PE()0×1×2×3×.能力拓展提

7、升11.(2011·溫州十校聯(lián)考)已知隨機變量XN(3,22),若X23,則D()等于()A0B1C2D4答案B解析由X23,得D(X)4D(),而D(X)224,D()1.12(2011·廣州模擬)一射手對靶射擊,直到第一次命中為止,每次命中的概率為0.6,現(xiàn)有4顆子彈,射擊停止后尚余子彈的數(shù)目X的期望值為()A2.44 B3.376 C2.376 D2.4答案C解析X的取值為3、2、1、0,P(X3)0.6;P(X2)0.4×0.60.24;P(X1)0.42×0.60.096;P(X0)0.43×0.60.440.064.E(X)3

8、15;0.62×0.241×0.0960×0.0642.376.13(2012·河北石家莊市模擬)有一批貨物需要用汽車從城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響據(jù)調(diào)查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:所用的時間(天數(shù))10111213通過公路1的頻數(shù)20402020通過公路2的頻數(shù)10404010假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(1)為了盡最大可能在各自允許的時間內(nèi)將貨物運往城市乙,估計汽車A和汽車B應(yīng)如何選擇各自

9、的路徑(2)若通過公路1、公路2的“一次性費用”分別為3.2萬元、1.6萬元(其他費用忽略不計),此項費用由生產(chǎn)商承擔(dān)如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,銷售商將少支付給生產(chǎn)商2萬元如果汽車A、B長期按(1)中所選路徑運輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大(注:毛利潤銷售商支付給生產(chǎn)商的費用一次性費用)解析(1)頻率分布表,如下:所用的時間(天數(shù))10111213通過公路1的頻率0.20.40.20.2通過公路2的頻率0.10.40.40.1設(shè)A1、A2

10、分別表示汽車A在前11天出發(fā)選擇公路1、2將貨物運往城市乙;B1、B2分別表示汽車B在前12天出發(fā)選擇公路1、2將貨物運往城市乙P(A1)0.20.40.6,P(A2)0.10.40.5,汽車A應(yīng)選擇公路1.P(B1)0.20.40.20.8,P(B2)0.10.40.40.9,汽車B應(yīng)選擇公路2.(2)設(shè)X表示汽車A選擇公路1時,銷售商付給生產(chǎn)商的費用,則X42,40,38,36.X的分布列如下:X42403836P0.20.40.20.2E(X)42×0.240×0.438×0.236×0.239.2.汽車A選擇公路1時的毛利潤為39.23.236.

11、0(萬元)設(shè)Y表示汽車B選擇公路2時的毛利潤,Y42.4,40.4,38.4,36.4.則分布列如下:Y42.440.438.436.4P0.10.40.40.1E(Y)42.4×0.140.4×0.438.4×0.436.4×0.139.4,汽車B選擇公路2時的毛利潤為39.4萬元,36.0<39.4,汽車B為生產(chǎn)商獲得毛利潤更大14(2012·陜西理,20)某銀行柜臺設(shè)有一個服務(wù)窗口,假設(shè)顧客辦理業(yè)務(wù)所需的時間互相獨立,且都是整數(shù)分鐘,對以往顧客辦理業(yè)務(wù)所需的時間統(tǒng)計結(jié)果如下:辦理業(yè)務(wù)所需的時間(分)12345頻率0.10.40.30

12、.10.1從第一個顧客開始辦理業(yè)務(wù)時計時(1)估計第三個顧客恰好等待4min開始辦理業(yè)務(wù)的概率;(2)X表示至第2min末已辦理完業(yè)務(wù)的顧客人數(shù),求X的分布列及數(shù)學(xué)期望分析(1)由表中所給出的數(shù)值,第三個顧客恰好等待4min開始辦理業(yè)務(wù)應(yīng)分三種情況,逐一列出后求出其概率(2)從已知條件知,X的值為0人,1人,2人三種情況,特別當(dāng)x1時要注意再進(jìn)行分類討論解析設(shè)Y表示顧客辦理業(yè)務(wù)所需的時間,用頻率估計概率,得Y的分布列如下:Y12345P0.10.40.30.10.1(1)A表示事件“第三個顧客恰好等待4min開始辦理業(yè)務(wù)”,則事件A對應(yīng)三種情形:第一個顧客辦理業(yè)務(wù)所需的時間為1min,且第二個

13、顧客辦理業(yè)務(wù)所需的時間為3min;第一個顧客辦理業(yè)務(wù)所需的時間為3min,且第二個顧客辦理業(yè)務(wù)所需的時間為1min;第一個和第二個顧客辦理業(yè)務(wù)所需的時間均為2min.所以P(A)P(Y1)P(Y3)P(Y3)P(Y1)P(Y2)P(Y2)0.1×0.30.3×0.10.4×0.40.22.(2)X所有可能的取值為0,1,2.X0對應(yīng)第一個顧客辦理業(yè)務(wù)所需的時間超過2min,所以P(X0)P(Y>2)0.5;X1對應(yīng)第一個顧客辦理業(yè)務(wù)所需的時間為1min且第二個顧客辦理業(yè)務(wù)所需的時間超過1min,或第一個顧客辦理業(yè)務(wù)所需的時間為2min,所以P(X1)P(Y1

14、)P(Y>1)P(Y2)0.1×0.90.40.49;X2對應(yīng)兩個顧客辦理業(yè)務(wù)所需的時間均為1min,所以P(X2)P(Y1)P(Y1)0.1×0.10.01;所以X的分布列為X012P0.50.490.01E(X)0×0.51×0.492×0.010.51.15設(shè)兩球隊A、B進(jìn)行友誼比賽,在每局比賽中A隊獲勝的概率都是p(0p1)(1)若比賽6局,且p,求其中A隊至多獲勝4局的概率是多少?(2)若比賽6局,求A隊恰好獲勝3局的概率的最大值是多少?(3)若采用“五局三勝”制,求A隊獲勝時的比賽局?jǐn)?shù)的分布列和數(shù)學(xué)期望解析(1)設(shè)“比賽6局,

15、A隊至多獲勝4局”為事件A,則P(A)1P6(5)P6(6)11.A隊至多獲勝4局的概率為.(2)設(shè)“若比賽6局,A隊恰好獲勝3局”為事件B,則P(B)Cp3(1p)3.當(dāng)p0或p1時,顯然有P(B)0.當(dāng)0<p<1時,P(B)Cp3(1p)320·p(1p)320·320·6,當(dāng)且僅當(dāng)p1p,即p時取等號故A隊恰好獲勝3局的概率的最大值是.(3)若采用“五局三勝”制,A隊獲勝時的比賽局?jǐn)?shù)3,4,5.P(3)p3;P(4)Cp3(1p)3p3(1p);P(5)Cp3(1p)26p3(1p)2,所以的分布列為:345Pp33p3(1p)6p3(1p)2E

16、()3p3(10p224p15)點評本題第(3)問容易出錯,“五局三勝制”不一定比滿五局,不是“五局中勝三局”A隊獲勝包括:比賽三局,A隊全勝;比賽四局,A隊前三局中勝兩局,第四局勝;比賽五局,前四局中勝兩局,第五局勝,共三種情況1設(shè)隨機變量服從分布P(k),(k1、2、3、4、5),E(31)m,E(2)n,則mn()A B7 C. D5答案D解析E()1×2×3×4×5×,E(31)3E()110,又E(2)12×22×32×42×52×15,mn5.2已知隨機變量服從正態(tài)分布N(0,2),

17、P(>2)0.023,則P(22)()A0.477 B0.628 C0.954 D0.977答案C分析若N(,2),則為其均值,圖象關(guān)于x對稱,為其標(biāo)準(zhǔn)差解析P(>2)0.023,P(<2)0.023,故P(22)1P(>2)P(<2)0.954.故選C.點評考查其對稱性是考查正態(tài)分布的主要方式3某次國際象棋比賽規(guī)定,勝一局得3分,平一局得1分,負(fù)一局得0分,某參賽隊員比賽一局勝的概率為a,平局的概率為b,負(fù)的概率為c(a,b,c0,1),已知他比賽一局得分的數(shù)學(xué)期望為1,則ab的最大值為()A. B. C. D.答案C解析由條件知,3ab1,ab(3a)

18、3;b·2,等號在3ab,即a,b時成立4(2012·重慶理,17)甲、乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲獲勝的概率;(2)求投籃結(jié)束時甲的投球次數(shù)的分布列與期望分析(1)“甲獲勝”的含義是:第一次甲中,或者第一次甲、乙都不中、第二次甲中,或者第一、二次甲、乙都不中,第三次甲中(2)“甲投球次數(shù)”的取值為1、2、3,1表示第一次甲中;2表示第一次甲、乙都未中,第二次甲中;3表示第一、二次甲、乙都不中,第三次甲中解析設(shè)Ak,Bk分別表示甲、乙在第k次投籃投中,則P(Ak),P(Bk),(k1,2,3)(1)記“甲獲勝”為事件C,由互斥事件有一個發(fā)生的概率與相互獨立事件同時發(fā)生的概率計算公式知P(C)P(A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論